

Sommaire

Inti	roduct	tion	5
ı.	Pré	ambule	6
ı	.1.	Objectif de l'étude de dangers	6
- 1	.2.	Contexte législatif et réglementaire	6
I	.3.	Nomenclature des installations classées	6
I	.4.	Démarche générale de l'étude de dangers	
II.	Info	ormations générales concernant l'installation	8
I	I.1.	Renseignements administratifs	
I	1.2.	Localisation du site	
I	1.3.	Définition de l'aire d'étude	
III.	Des	cription de l'environnement de l'installation	10
	II.1.	Environnement humain	
	II.2.	Environnement naturel	
I	II.3.	Environnement matériel	14
IV.	Cart	tographie de synthèse	15
٧.	Des	cription de l'installation	17
١	V.1.	Caractéristiques de l'installation	17
١	V.2.	Fonctionnement de l'installation	
\	V.3.	Fonctionnement des réseaux de l'installation	24
VI.	Ider	ntification des potentiels de dangers de l'installation	25
	VI.1.	Potentiels de dangers liés aux produits	
	VI.2.	Potentiels de dangers liés au fonctionnement de l'installation	
	VI.3.	Réduction des potentiels de dangers à la source	
VII.	Ana	alyse des retours d'expérience	
١	VII.1.	Inventaire des accidents et incidents en France	
١	VII.2.	Inventaire des accidents et incidents à l'international	
	VII.3.	Inventaire des accidents majeurs survenus sur les sites de l'exploitant	
	VII.4.	Synthèse des phénomènes dangereux redoutés issus du retour d'expérience	
	VII.5.	Limites d'utilisation de l'accidentologie	
VIII	. Ana	alyse préliminaire des risques	29
	VIII.1.	Objectif de l'analyse préliminaire des risques	
	VIII.2.	Recensement des événements initiateurs exclus de l'analyse des risques	
	VIII.3.	Recensement des agressions externes potentielles	
	VIII.4.	Scenarii étudiés dans l'analyse préliminaire des risques	
	VIII.5.	Effets dominos Mise en place des mesures de sécurité	
	VIII.6. VIII.7.	Conclusion de l'analyse préliminaire des risques	
IX.		de détaillée des risquesde	
	X.1.	Rappel des définitions	
-	X.1. X.2.	Caractérisation des scenarii retenus	
х.		thèse de l'étude détaillée des risques	
XI.	-	nclusion	
ΛΙ.	COII	NUJUI	4/

Bibliographie et références utilisées	48
Annexe 1 – Méthode de comptage des personnes pour la détermination de la gravité potentielle d'un	•
d'une éolienne	48
Annexe 2 – Tableau de l'accidentologie française	50
Annexe 3 – Glossaire	62

Sommaire des illustrations

Carte 1 : Localisation du projet	8
Carte 2 : Aire d'étude du projet éolien des Quatre Vents	9
Carte 3 : Distance aux habitations	
Carte 4 : Localisation des ICPE	11
Carte 5 : Localisation du projet par rapport aux risques sismiques (Source : Ministère de l'Ecologie)	13
Carte 6 : Répartition des impacts de foudre sur le territoire français métropolitain (Source : Météorage)	
Carte 8 : Distance aux voiries	
Carte 9 : Synthèse des contraintes	
Carte 10 : Plan de masse du projet éolien des Quatre Vents	
· ·	
Carte 11 : Zones d'effet du projet éolien des Quatre Vents	
Carte 12 : Synthèse des risques du projet éolien des Quatre Vents	46
Tables 1 · Consideration of a sampling of the state of the sample of the	۔ ۔ ا۔
Tableau 1 : Coordonnées géographiques (Lambert 93) des éoliennes et des postes de livraison du parc éolien	
Quatre Vents	
Tableau 2 : Zones habitées les plus proches du parc éolien	
Tableau 3 : Liste des arrêtés portant reconnaissance de l'état de catastrophe naturelle	
Tableau 4 : Caractérisation des voies de communication les plus proches du parc éolien des Quatre Vents	
Tableau 5 : Coordonnées géographiques (Lambert 93) des éoliennes et des postes de livraison du parc éolien	
Tableau 6 : Dangers potentiels recensés	
Tableau 7 : Principales agressions externes liées aux activités humaines	29
Tableau 8 : Principales agressions externes liées aux phénomènes naturels	30
Tableau 9 : Analyse générique des risques	30
Tableau 10 : Présentation des mesures de sécurités (Source : Guide technique, SER – FEE – INERIS)	32
Tableau 11 : Catégories exclues de l'APR	
Tableau 12 : Détermination du seuil de gravité (Source : Guide technique, SER – FEE – INERIS)	
Tableau 13 : Définition des classes de probabilité (Source : Guide technique, SER – FEE – INERIS)	
Tableau 14 : Détermination des paramètres relatifs à l'intensité du phénomène d'effondrement d'éolienne	
Tableau 15 : Détermination des paramètres relatifs à la gravité du phénomène d'effondrement d'éolienne	55
(Source : Guide technique, SER – FEE – INERIS)	40
Tableau 16 : Paramètres relatifs à la probabilité du phénomène d'effondrement d'éolienne	
Tableau 17 : Détermination des paramètres relatifs à l'intensité du phénomène de chute d'éléments de	40
l'éolienne	11
Tableau 18 : Détermination des paramètres relatifs à la gravité du phénomène de chute d'éléments de l'éolie	
Tableau 19 : Détermination des paramètres relatifs à l'intensité du phénomène de chute de glace	
Tableau 20 : Détermination des paramètres relatifs à la gravité du phénomène de chute de glace	
Tableau 21 : Détermination des paramètres relatifs à l'intensité du phénomène de projection de glace	
Tableau 22 : Détermination des paramètres relatifs à la gravité du phénomène de projection de glace	43
Tableau 23 : Détermination des paramètres relatifs à l'intensité du phénomène de projection de pales ou de	
fragments de pales (Source : Guide technique, SER – FEE – INERIS)	43
Tableau 24 : Détermination des paramètres relatifs à la gravité du phénomène de projection de pales ou de	
fragments de pales (Source : Guide technique, SER – FEE – INERIS)	44
Tableau 25 : Paramètres relatifs à la probabilité du phénomène de projection de pales ou de fragments de pa	les
(Source : Guide technique, SER – FEE – INERIS)	
Tableau 26 : Détermination de l'acceptabilité	45
Tableau 27 : Synthèse des risques	
Figure 1 : Ratio incidents/puissance installée sur les parcs éoliens entre 1998 et 2018	5

Figure 2 : Démarche de l'étude de dangers	7
Figure 3 : Direction et force des vents au niveau de la station de Château-Guibert (Source :	
meteoblue.com)	11
Figure 4 : Nombre moyen de jours avec des rafales de vents supérieures à 16 m/s (soit environ 57 km/h) et 20	8
m/s (soit environ 100	12
Figure 6 : Schéma simplifié d'un aérogénérateur	17
Figure 7 : Illustration des emprises au sol d'une éolienne	17
Figure 8 : Arrêt d'une éolienne (Source : ENERCON)	20
Figure 9 : Modes de fonctionnement : courbes de puissance en fonction de la vitesse du vent (Source : Guide	:
technique, SER – FEE – INERIS)	21
Figure 10 : Schéma de raccordement électrique d'un parc éolien	24
Figure 11 : Répartition des événements accidentels et de leurs causes premières (Source : Guide technique, S	SER
– FEE – INERIS)	27
Figure 12 : Répartition des événements accidentels et de leurs causes premières dans le monde entre 2000 e	ŧt
2011 (Source : CWIF)	27
Figure 13 : Répartition des causes premières d'effondrement (Source : CWIF)	28
Figure 14 : Répartition des causes premières de rupture de pale (Source : CWIF)	28
Figure 15 : Répartition des causes premières d'incendie (Source : CWIF)	28
Figure 16 : Evolution du nombre d'incidents annuels en France et nombre d'éoliennes installées	28

Introduction

A la suite des accords du protocole de Kyoto et conformément à la directive européenne 2001/77/CE relative à la promotion de l'électricité produite à partir de sources d'énergies renouvelables, la France s'est engagée à augmenter la part des énergies renouvelables dans la production d'électricité au niveau national.

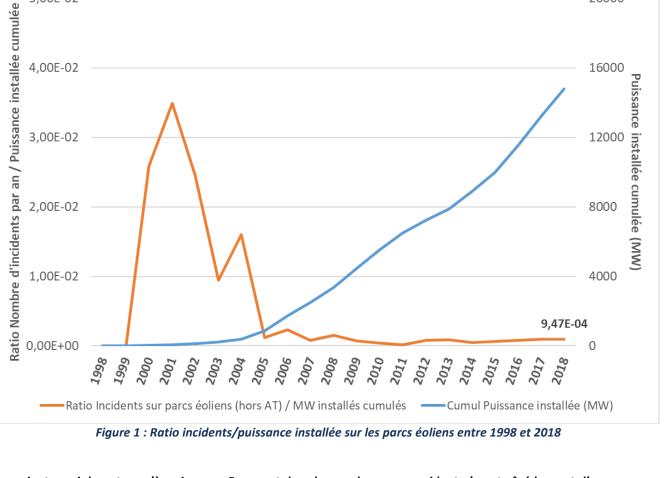
En particulier, la loi n°2005-781 du 13 juillet 2005 fixant les orientations de la politique énergétique (loi POPE) a donné un cap à suivre pour les décennies suivantes. Cette loi s'était construite autour de quatre grands objectifs à long terme :

- L'indépendance énergétique du pays ;
- L'assurance de prix compétitifs de l'énergie;
- La garantie de la cohésion sociale et territoriale par l'accès de tous à l'énergie;
- La préservation de la santé, notamment en luttant contre l'aggravation de l'effet de serre.

Dans le cadre du Grenelle de l'Environnement, les engagements de la France en matière de production d'énergies renouvelables ont été confirmés, précisés et élargis. La loi n°2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l'Environnement (loi Grenelle I) prévoit que la France porte la part des énergies renouvelables à au moins 23 % de sa consommation d'énergie finale d'ici 2020.

La publication de ces objectifs, dans un contexte mondial favorable au développement des énergies renouvelables, a donc permis un développement technologique spectaculaire. Alors que, dans les années 1980, une éolienne terrestre permettait d'alimenter environ 10 personnes en électricité, une éolienne de nouvelle génération fournit en moyenne de l'électricité pour 2 000 personnes hors chauffage (source : SER-FEE, ADEME).

La Programmation pluriannuelle de l'énergie (PPE), qui fixe les priorités d'actions des pouvoirs publics dans le domaine de la transition énergétique, a attribué en 2020 des objectifs pour la filière éolienne.


Pour l'éolien terrestre, la puissance installée devra atteindre 24,1 GW à fin 2023. A l'horizon 2028, ce seront 33,2 GW pour une option basse, et 34,7 GW pour une option haute, qui devront être implantés en France métropolitaine.

Pour l'éolien en mer, l'objectif est d'atteindre 2,4 GW de puissance à fin 2023 et une fourchette de 5,2 – 6,2 GW en 2028.

Si les éoliennes terrestres ont évolué en taille et en puissance dans le monde entier, leur technologie actuelle est également sensiblement différente des premières éoliennes installées. Les technologies sont aujourd'hui plus sûres et plus fiables grâce à de nombreuses évolutions technologiques telles que :

- Les freins manuels (sur le moyeu) de rotor qui ont été remplacés par des systèmes de régulation aérodynamiques (pitch), évitant l'emballement et assurant des vitesses de rotation nominales constantes ;
- L'évolution des matériaux des pales vers des fibres composites ;
- Le développement de nouveaux systèmes de communication par fibre optique, ADSL, satellites, etc. qui ont permis d'améliorer la supervision des sites et la prise de commande à distance ;
- L'installation de nouveaux systèmes de sécurité (détection de glace, vibrations, arrêts automatiques, etc.).

Ainsi, les premiers incidents rencontrés (bris de pales, incendies, effondrement, etc.) ont amené les constructeurs à améliorer sans cesse leurs aérogénérateurs. Grâce à ces évolutions, et le retour d'expérience le montre bien, les incidents ont largement diminués en proportion au parc installé.

20000

Il convient aussi de noter qu'à ce jour, en France et dans le monde, aucun accident n'a entraîné la mort d'une personne tierce (promeneurs, riverains) du fait de l'effondrement d'éoliennes, de bris de pales ou de projections de fragment de pales.

5,00E-02

I. Préambule

I.1. Objectif de l'étude de dangers

La présente étude de dangers a été rédigée sur la base du Guide technique élaboré conjointement par les professionnels de France Energie Eolienne (FEE), du Syndicat des Energies Renouvelables (SER) et l'INERIS, sur la demande de la Direction Générale de la Prévention des Risques (DGPR) du Ministère de l'écologie. Ce guide a été reconnu comme référence pour l'étude de dangers des parcs éoliens terrestres en juin 2012 par le Ministère de l'Ecologie, du Développement Durable et de l'Energie.

La présente étude a pour objet de rendre compte de l'examen effectué par l'exploitant, Energie Quatre Vents, pour caractériser, analyser, évaluer, prévenir et réduire les risques du futur parc éolien des Quatre Vents, autant que technologiquement réalisable et économiquement acceptable, et cela que leurs causes soient intrinsèques aux substances ou matières utilisées, liées aux procédés mis en œuvre ou dues à la proximité d'autres risques d'origine interne ou externe à l'installation.

Cette étude est proportionnée aux risques présentés par les quatre éoliennes et les deux postes de livraison du parc situés sur les commune de Château-Guibert et Les Pineaux. Le choix de la méthode d'analyse utilisée et la justification des mesures de prévention, de protection et d'intervention sont adaptés à la nature et la complexité des installations et de leurs risques.

Elle précise l'ensemble des mesures de maîtrise des risques mises en œuvre sur le parc éolien des Quatre Vents, qui réduisent le risque à l'intérieur et à l'extérieur des éoliennes à un niveau jugé acceptable par l'exploitant.

Ainsi, cette étude permet une approche rationnelle et objective des risques encourus par les personnes, en satisfaisant les principaux objectifs suivants :

- Améliorer la réflexion sur la sécurité à l'intérieur de l'entreprise afin de réduire les risques et optimiser la politique de prévention ;
- Favoriser le dialogue technique avec les autorités d'inspection pour la prise en compte des parades techniques et organisationnelles dans l'arrêté d'autorisation ;
- Informer le public dans la meilleure transparence possible en lui fournissant des éléments d'appréciation clairs sur les risques.

I.2. Contexte législatif et réglementaire

L'article L.181-1 du Code de l'environnement précise que le régime de l'autorisation environnementale instauré par l'ordonnance n° 2017-80 et les décrets n° 2017-81 et 2017-82 du 26 janvier 2017 est applicable aux installations classées pour la protection de l'environnement.

Aux termes de l'article L.515-44 du Code de l'environnement, les parcs éoliens dont l'une des éoliennes au moins dispose d'un mât d'une hauteur supérieure à 50 mètres sont soumis à autorisation au titre des installations classées pour la protection de l'environnement. L'article D.181-15-2, 10° du même Code précise que lorsque l'autorisation environnementale concerne une installation classée pour la protection de l'environnement, le dossier de demande est complété par une étude de dangers.

Selon l'article L.181-25 du Code de l'environnement, l'étude de dangers expose les risques que peut présenter l'installation pour les intérêts visés à l'article L.511-1 du même Code <u>en cas d'accident</u>, que la cause soit interne ou externe à l'installation. Les impacts de l'installation sur ces intérêts en fonctionnement normal sont traités dans l'étude d'impact sur l'environnement.

Le contenu de l'étude de dangers devant être jointe au dossier de demande est précisé à l'article D.181-15-2, III du Code de l'environnement.

Les intérêts visés à l'article L.511-1 du Code de l'environnement sont la commodité du voisinage, la santé, la sécurité, la salubrité publiques, l'agriculture, la protection de la nature, de l'environnement et des paysages, l'utilisation rationnelle de l'énergie, la conservation des sites et des monuments ainsi que des éléments du patrimoine archéologique. Cependant, il convient de noter que l'arrêté du 29 septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité

d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation impose une évaluation des accidents majeurs sur les personnes uniquement et non sur la totalité des enjeux identifiés dans l'article L.511-1.

En cohérence avec cette réglementation et dans le but d'adopter une démarche proportionnée, l'évaluation des accidents majeurs dans l'étude de dangers s'intéressera prioritairement aux dommages sur les personnes. Pour les parcs éoliens, les atteintes à l'environnement (notamment au paysage), l'impact sur le fonctionnement des radars et les problématiques liées à la circulation aérienne feront l'objet d'une évaluation détaillée au sein de l'étude d'impact.

Ainsi, l'étude de dangers a donc pour objectif de <u>démontrer la maîtrise du risque par l'exploitant</u>. Elle comporte une analyse des risques qui présente les différents scénarios d'accidents majeurs susceptibles d'intervenir. Ces scénarios sont caractérisés en fonction de leur probabilité d'occurrence, de leur cinétique, de leur intensité et de la gravité des accidents potentiels. Elle justifie que le projet permet d'atteindre, dans des conditions économiquement acceptables, un niveau de risque aussi bas que possible, compte tenu de l'état des connaissances et des pratiques et de la vulnérabilité de l'environnement de l'installation.

Selon le <u>principe de proportionnalité</u>, le contenu de l'étude de dangers doit être en relation avec l'importance des risques engendrés par l'installation, compte tenu de son environnement et de sa vulnérabilité. Ce contenu est défini par l'article D.181-15-2, III du Code de l'environnement.

Enfin, l'arrêté du 29 septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation (NOR: DEVP0540371A) fixe la détermination des seuils réglementaires pour apprécier l'intensité des effets physiques des phénomènes dangereux, la gravité des accidents et les classes de probabilité de ces phénomènes et la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003 (NOR: DEVP1013761C) énonce des règles de méthodologie applicables pour l'élaboration des études de dangers.

I.3. Nomenclature des installations classées

Conformément à l'article R.511-9 du Code de l'environnement, modifié par le décret n°2011-984 du 23 août 2011, les parcs éoliens terrestres sont soumis à la rubrique 2980 de la nomenclature des installations classées :

N°	DÉSIGNATION DE LA RUBRIQUE	A, E, D, S, C (1)	RAYON (2)				
2980	Installation terrestre de production d'électricité à partir de l'énergie mécanique du vent et regroupant un ou plusieurs aérogénérateurs: 1. Comprenant au moins un aérogénérateur dont le mât a une hauteur supérieure ou égale à 50 m	A	6				
	a) Supérieure ou égale à 20 MWb) Inférieure à 20 MW	A D	6				

 ⁽¹⁾ A: autorisation, E: enregistrement, D: déclaration, S: servitude d'utilité publique, C: soumis au contrôle périodique prévu par l'article
 L. 512-11 du code de l'environnement.
 (2) Rayon d'affichage en kilomètres.

Le parc éolien des Quatre Vents comprend au moins un aérogénérateur dont le mât a une hauteur supérieure ou égale à 50 m (cas 1) : cette installation est donc soumise à autorisation (A) au titre des installations classées pour la protection de l'environnement et doit présenter une étude de dangers au sein de sa demande d'autorisation d'exploiter.

I.4. Démarche générale de l'étude de dangers

Cette partie du guide de l'étude de dangers rappelle les différentes étapes de la démarche d'analyse des risques qui doit être mise en œuvre dans le cadre de l'étude de dangers des parcs éoliens, conformément à la réglementation en vigueur et aux recommandations de l'inspection des installations classées. Elles sont énumérées ici dans l'ordre dans lequel elles sont présentées ensuite au sein de la trame de l'étude de dangers des parcs éoliens.

Identifier les enjeux pour permettre une bonne caractérisation des conséquences des accidents (présence et vulnérabilité de maisons, infrastructures, etc.). Cette étape s'appuie sur une description et caractérisation de l'environnement.

Connaître les équipements étudiés pour permettre une bonne compréhension des dangers potentiels qu'ils génèrent. Cette étape s'appuie sur une description des installations et de leur fonctionnement.

Identifier les potentiels de danger. Cette étape s'appuie sur une identification des éléments techniques et la recherche de leurs dangers ; suit une étape de réduction / justification des potentiels.

Connaître les accidents qui se sont produits sur le même type d'installation pour en tirer des enseignements (séquences des événements, possibilité de prévenir ces accidents, etc.). Cette étape s'appuie sur un retour d'expérience (des accidents et incidents représentatifs).

Analyser les risques inhérents aux installations étudiées en vue d'identifier les scénarios d'accidents possibles (qui se sont produits et qui pourraient se produire). Cette étape utilise notamment les outils d'analyses de risques classiques (tableaux d'Analyse Préliminaire des Risques par exemple).

Caractériser et classer les différents phénomènes et accidents en termes de probabilités, cinétique, intensité et gravité. C'est l'étape détaillée des risques, avec mise en œuvre des outils de quantification en probabilité et en intensité / gravité.

Réduire le risque si nécessaire. Cette étape s'appuie sur des critères d'acceptabilité du risque : si le risque est jugé inacceptable, des évolutions et mesures d'amélioration sont proposées par l'exploitant.

Représenter le risque. Cette étape s'appuie sur une représentation cartographique.

Résumer l'étude de dangers. Cette étape s'appuie sur un résumé non technique de l'étude des dangers.

Le graphique ci-dessous synthétise ces différentes étapes et leurs objectifs :

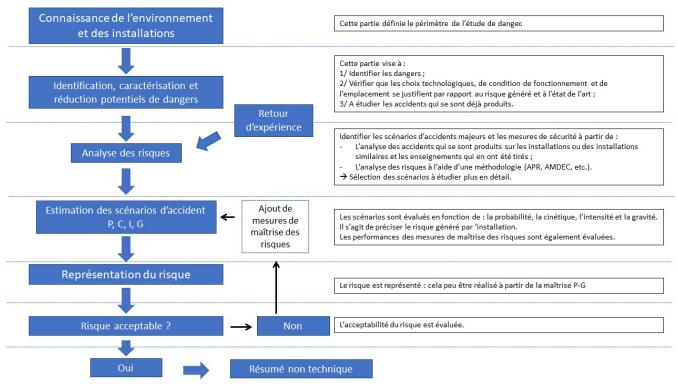


Figure 2 : Démarche de l'étude de dangers

Si la démarche de réduction du risque est considérée comme acceptable, une représentation cartographique et un résumé non-technique sont réalisés.

II. Informations générales concernant l'installation

II.1. Renseignements administratifs

L'exploitant du parc éolien des Quatre Vents est la société Energie Quatre Vents, immatriculée sous le numéro 852 675 545 au registre du commerce et des sociétés de Nanterre et domiciliée au 32 – 36 rue de Bellevue à Boulogne-Billancourt (92100).

Cette société d'exploitation est une filiale du groupe wpd Europe GmbH, qui rassemble l'ensemble des compétences nécessaires au développement, au financement, à la construction et à l'exploitation des parcs éoliens. En particulier, le projet éolien des Quatre Vents a été porté par wpd onshore France, filiale française du groupe basée à Boulogne-Billancourt et chargée du développement de parcs éoliens (voir explications complémentaires dans le dossier de demande d'autorisation environnementale).

Energie Quatre Vents est une société entièrement dédiée au projet éolien des Quatre Vents, ce qui permet d'assurer une gestion locale et efficace du parc éolien.

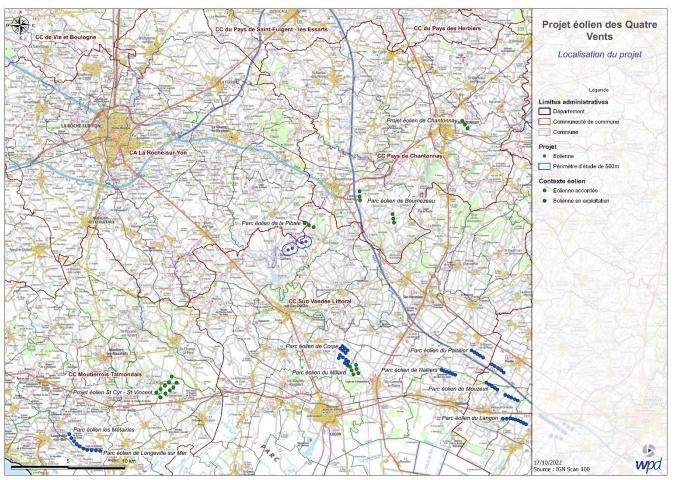
La rédactrice de la présente étude de dangers au sein de wpd onshore France est Capucine de Bouvier, responsable d'études environnementales.

II.2. Localisation du site

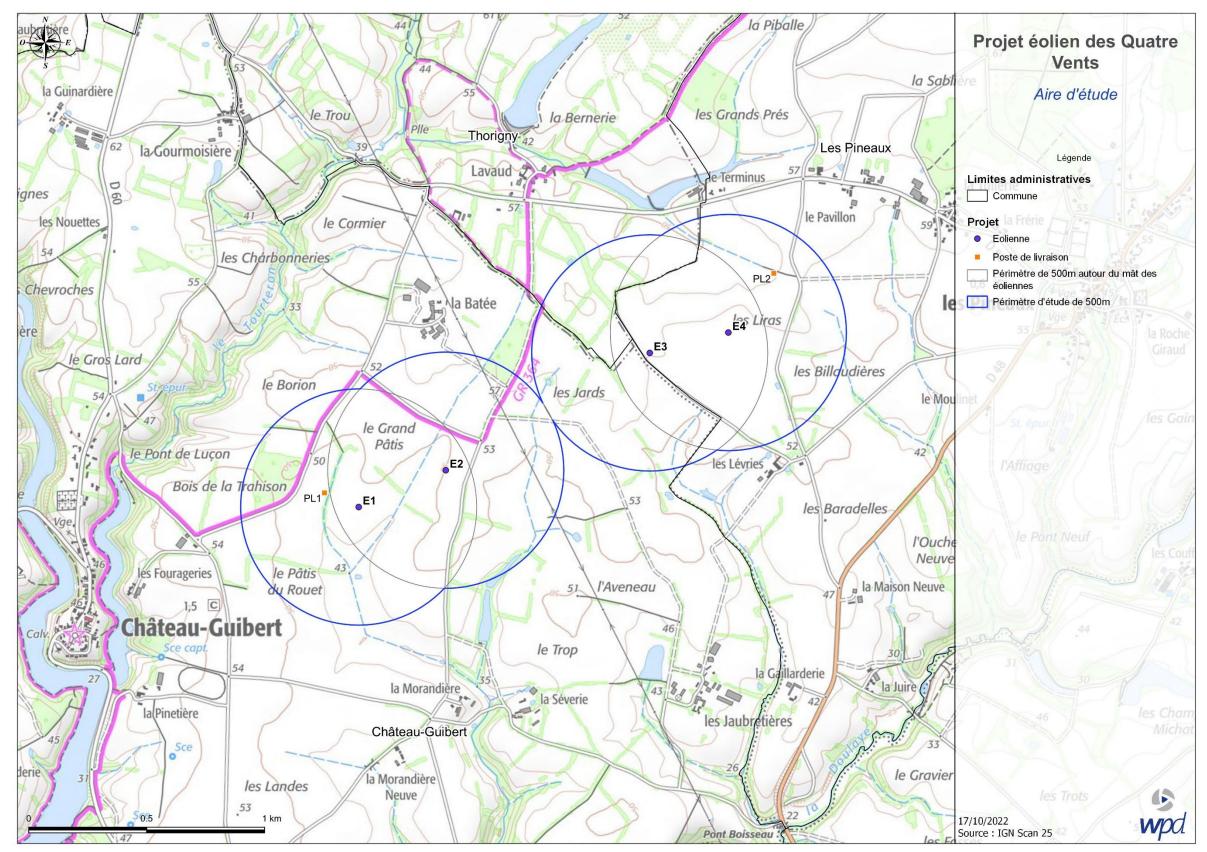
Le parc éolien des Quatre Vents est composé de quatre éoliennes et de deux postes de livraison. Il est localisé sur les communes de Château-Guibert et Les Pineaux situées au sein de la Communauté Sud-Vendée-Littoral, dans le département de la Vendée (85), en région Pays de la Loire. Les Carte 1 et 2 ci-après permettent de localiser le projet.

Tableau 1 : Coordonnées géographiques (Lambert 93) des éoliennes et des postes de livraison du parc éolien des Quatre
Vents

10110							
Eolienne	Hauteur bout de pale (m)	X	Υ	Altitude au sol (m NGF)			
E1	180	376 891	6 618 059	50			
E2	180	377 360	6 618 215	52			
E3	180	378 124	6 618 711	57			
E4	180	378 457	6 618 798	55			
PL1	-	376 721	6 618 125	47			
PL2	-	378 648	6 619 046	55			


II.3. Définition de l'aire d'étude

Compte tenu des spécificités de l'organisation spatiale d'un parc éolien, composé de plusieurs éléments disjoints, la zone sur laquelle porte l'étude de dangers est constituée d'une aire d'étude par éolienne.


Chaque aire d'étude correspond à l'ensemble des points situés à une distance inférieure ou égale à 500 m à partir de l'emprise du mât de l'aérogénérateur. Cette distance équivaut à la distance d'effet retenue pour les phénomènes de projection, telle que définie au paragraphe IX.2.4.

La zone d'étude n'intègre pas les environs des postes de livraison, qui seront néanmoins représentés sur les cartes. Les expertises réalisées dans le cadre de la présente étude ont en effet montré l'absence d'effet à l'extérieur des postes de livraison pour chacun des phénomènes dangereux potentiels pouvant l'affecter. L'aire d'étude retenue dans le cadre de ce projet est représentée sur la Carte 2.

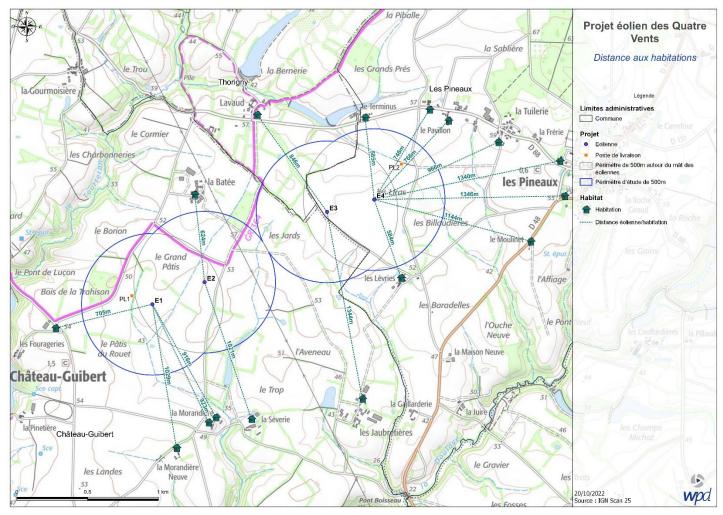
Carte 1: Localisation du projet

Carte 2 : Aire d'étude du projet éolien des Quatre Vents

III. Description de l'environnement de l'installation

Ce chapitre a pour objectif de décrire l'environnement dans le périmètre d'étude de l'installation, afin d'identifier les principaux intérêts à protéger (enjeux) et les facteurs de risque que peut représenter l'environnement vis-à-vis de l'installation (agresseurs potentiels).

III.1. Environnement humain


III.1.1. Zones urbanisées

L'habitation la plus proche est située aux Pineaux au lieu-dit Les Lévries, à plus de 584 mètres de la première éolienne (E4).

Tableau 2 : Zones habitées les plus proches du parc éolien

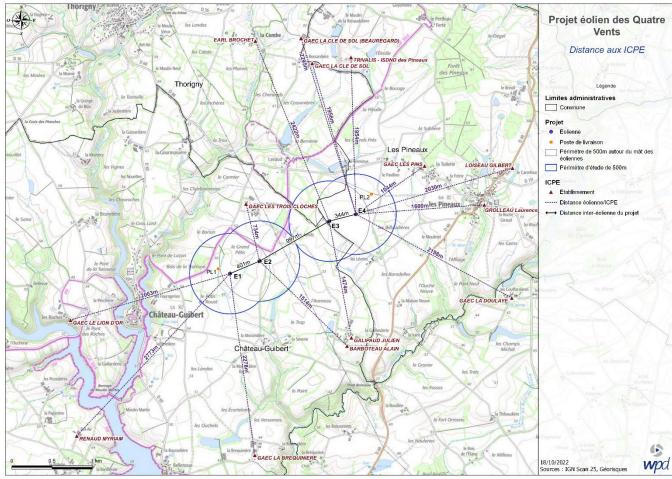
Tubledu 2 : Zones habitees les plus proches du parc conen						
Commune	Hameau ou lieu-dit	Distance au parc éolien				
Château-Guibert	Les Jaubretières	1344 m (E3)				
Château-Guibert	La Séverie	1021 m (E2)				
Château-Guibert	La Morandière	916 m (E1)				
Château-Guibert	La Morandière	923 m (E1)				
Château-Guibert	La Morandière Neuve	1029 m (E1)				
Château-Guibert	Les Fourageries	705 m (E1)				
Château-Guibert	La Batée	624 m (E2)				
Thorigny	Lavaud	846 m (E3)				
Les Pineaux	Le Terminus	585 m (E4)				
Les Pineaux	Le Pavillon	748 m (E4)				
Les Pineaux	Le Pavillon	766 m (E4)				
Les Pineaux	La Tuilerie	966 m (E4)				
Les Pineaux		1340 m (E4)				
Les Pineaux		1346 m (E4)				
Les Pineaux	Le Moulinet	1144 m (E4)				
Les Pineaux	Les Lévries	584 m (E4)				

Les éoliennes du parc éolien des Quatre Vents sont à chaque fois situées à plus de 584 mètres des habitations.

Carte 3: Distance aux habitations

III.1.2. Etablissements Recevant du Public (ERP)

Aucun ERP n'est concerné par le périmètre d'étude. Les ERP les plus proches (de type écoles, mairies ou magasins de vente) se situent au sein des villages alentour.


III.1.3. Installations classées pour la protection de l'environnement (ICPE)

D'après les informations disponibles, il n'y a pas d'ICPE dans le rayon d'étude de 500 m autour des éoliennes. L'ICPE la plus proche est située à plus de 700 mètres des éoliennes projetées, il s'agit de la GAEC Les Trois Cloches.

Il n'y a pas d'installation classée SEVESO sur le territoire de la commune d'implantation.

Ces données sont issues de la base de données des Installations Classées du Ministère de l'Environnement, de l'Energie et de la Mer, disponible en ligne.

Carte 4: Localisation des ICPE

III.1.4. Autres activités

Le voisinage immédiat du parc éolien des Quatre Vents est constitué principalement de cultures, de prairies, de boisements et de chemins communaux.

III.2. Environnement naturel

III.2.1. Préambule Contexte climatique

La région des Pays-de-la-Loire présente un dégradé climatique marqué en raison de l'étalement de la région des côtes vers l'intérieur. Une forte influence océanique s'impose sur le littoral, associée à de faibles amplitudes thermiques, des hivers doux et des étés ensoleillés, mais aussi des vents soutenus. Les collines de Vendée et de Mayenne reçoivent deux fois plus d'eau que l'Anjou qui fait partie des régions les moins arrosées de France. Sécheresses et fortes chaleurs sont récurrentes, surtout dans l'intérieur, mais les Pays de la Loire subissent aussi des épisodes de fortes pluies, de neige ou de froid.

III.2.1. Températures et précipitations

Les données disponibles sur la station météorologique de La Roche-sur-Yon montrent que sur une période de 29 ans (1981-2010), les précipitations sont présentes toute l'année, avec des précipitations plus marquées entre octobre et janvier et des précipitations plus faibles entre juin et août.

Le maximum des précipitations a lieu en octobre avec 102,8 mm. Le minimum de précipitations est relevé en août avec 41,7 mm.

La hauteur moyenne annuelle des précipitations sur la période 1981-2010 est de 841,9 mm.

La température moyenne annuelle minimale pour la station de La Roche-sur-Yon est de 2,4°C et maximale de 25,2°C sur la période 1981-2010. La courbe de températures moyennes pour la même période montre une amplitude thermique modérée entre l'hiver et l'été, caractéristique du climat tempéré océanique.

III.2.2. Vent

Au sein de la station de Château-Guibert, les vents provenant du secteur ouest sont dominants, et en particulier les vents de direction nord-ouest et sud-ouest. Dans une moindre mesure, les vents de sud-est et de nord/nord-est sont également présents. Sur la période 1981-2010, il est recensé 49,9 jours par an avec un vent modéré (dépassant les 16m/s soit 57,6 km/h) et 2 jours par an avec vent fort (dépassant 28m/s soit 100,8 km/h) (source : lameteo.org).

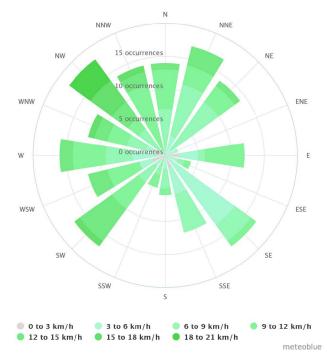


Figure 3 : Direction et force des vents au niveau de la station de Château-Guibert (Source : meteoblue.com)

Au niveau de la station de La Roche-sur-Yon, le nombre de jours avec vents forts est relativement peu important sur la Période 1981-2010.

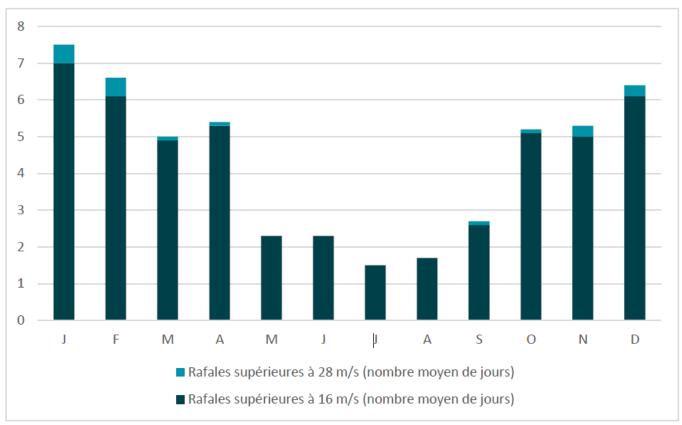


Figure 4 : Nombre moyen de jours avec des rafales de vents supérieures à 16 m/s (soit environ 57 km/h) et 28 m/s (soit environ 100

L'aire d'étude immédiate, située au centre de la Vendée, présente un climat au régime océanique altéré. Le nombre de jours de gel est faiblement important et la neige est rare. Le risque de foudre est faible. Les vents du secteur ouest sont dominants, avec un nombre de jours avec vents forts peu important sur la station la plus proche (La Roche-sur-Yon).

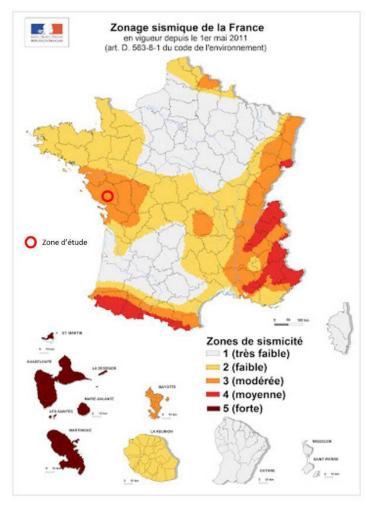
III.2.3. Risques naturels

L'aire d'étude immédiate se situe sur les communes de Château-Guibert, Thorigny et les Pineaux. Les risques naturels recensés pour ces communes par les bases de données de l'Etat (source : source : www.géorisques.gouv.fr et dossier départemental des risques majeurs (DDRM) de Vendée, 2019) sont :

- Le risque inondation lié au risque de rupture de barrage ;
- Le risque de mouvement de terrain, et notamment de retrait/gonflement d'argiles ;
- Le risque sismique ;
- Le risque radon ;
- Le risque météorologique (phénomènes liés à l'atmosphère).

Les évènements reconnus comme catastrophe naturelle sur ces communes sont présentés dans le tableau suivant.

Tableau 3 : Liste des arrêtés portant reconnaissance de l'état de catastrophe naturelle


Type de catastrophe	Commune	Début le	Fin le	Arrêté du
Inandationa coulées de boue et mouvemente de	Château-Guibert		29/12/1999	29/12/1999
Inondations, coulées de boue et mouvements de terrain (arrêté pris sur l'ensemble du territoire métropolitain) (tempête Lothar)	Les Pineaux	25/12/1999		
metropolitain) (tempete Lothar)	Thorigny			
Inandationa coulágo de boue mouvemente de	Château-Guibert		01/03/2010	01/03/2010
Inondations, coulées de boue, mouvements de terrain et chocs mécaniques liés à l'action des	Les Pineaux	27/02/2010		
vagues tempête Xynthia)	Thorigny			
	Château-Guibert	00/40/4000	31/12/1982	11/01/1983
	Les Pineaux	08/12/1982		
luondotione et esulées de lesus	Château-Guibert	00/04/4002	10/04/1983	24/06/4000
Inondations et coulées de boue	Les Pineaux	09/04/1983		21/06/1983
	Les Pineaux	20/00/4002	26/06/1983	00/00/4000
	Thorigny	20/06/1983		03/08/1983
Mouvements de terrains différentiels consécutifs à la sécheresse et à la réhydratation des sols	Château-Guibert	01/01/2017	31/12/2017	18/09/2018
Mouvements de terrain consécutifs à la sécheresse	Thorigny	01/01/1991	31/03/1993	06/12/1993

III.2.4. Sismicité

Les communes de Château-Guibert, Les Pineaux et Thorigny sont situées sur une zone à sismicité modérée (niveau 3). Ce risque n'est pas propre aux communes mais répond à un risque évalué par l'Etat sur le département de la Vendée.

D'après le site internet sisfrance.net :

- Trois séismes ont été ressentis en 1889, 1936 et 2002 sur la commune de Château-Guibert avec une intensité allant jusqu'à 3 (balancement des objets suspendus). Les épicentres se situaient en pays nantais et vendéen ainsi qu'en Bretagne :
- Cinq séismes ont été ressentis entre 1997 et 2005 sur la commune de Thorigny, avec une intensité ressentie allant de 2 (secousse partiellement ressentie par des gens au repos et aux étages) à 4 (tremblement des objets). Les épicentres se situaient en pays nantais et vendéen ainsi qu'en Bretagne et en Charente.
- Cinq séismes ont été ressentis entre 1997 et 2005 sur la commune Les Pineaux, avec une intensité moyenne ressentie de 4 (tremblement des objets) à 5 (chute d'objets, parfois légères fissures dans les murs). Les épicentres se situaient en pays nantais et vendéen.

Carte 5 : Localisation du projet par rapport aux risques sismiques (Source : Ministère de l'Ecologie)

Le site d'étude est localisé dans une zone de sismicité 3, correspondant à un risque modéré. Un projet de parc éolien n'est pas soumis à des exigences réglementaires particulières sur ce type de zone et n'augmentera pas le niveau de ce risque.

III.2.5. Mouvements de terrain

En ce qui concerne les mouvements de terrain, les bases de données du BRGM (Bureau de Recherches Géologiques et Minières) ont été consultées. Le terme de mouvement de terrains regroupe les déplacements plus ou moins brutaux du sol ou du sous-sol:

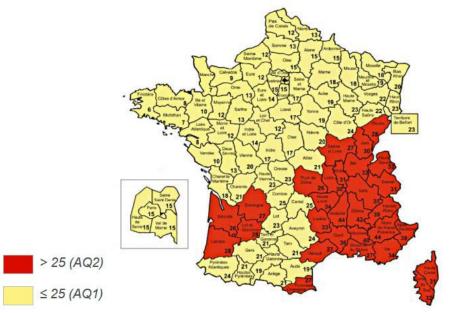
- Les effondrements et affaissements ;
- Les tassements par retrait/gonflement des argiles;
- Les éboulements, chutes de blocs et de pierres ;
- Les glissements, coulées de boues et érosions de berges.

L'aire d'étude immédiate est située dans un secteur à aléa faible sauf au niveau des cours d'eau et leurs abords (Le Tourteron, la Moinie / Guérineau et autres cours d'eau considérés comme « indéterminés » au titre de la Police de l'eau) qui sont localisés dans un secteur à aléa moyen de retrait/gonflement des argiles. L'aire d'étude immédiate n'est pas concernée par d'autres risques de mouvement de terrain.

III.2.6. Aléa effondrement, cavités souterraines

Le risque d'effondrement peut être lié à la présence de cavités souterraines. Les cavités sont souvent naturelles (ex : karst dans les substrats calcaires), mais peuvent également être d'origine anthropique (ex : anciennes mines ou carrières souterraines, champignonnières, etc.). Les cavités naturelles sont mal connues. Cependant cette région présente des risques d'effondrement liés à la présence de dolines ou cavités karstiques.

Des dommages importants peuvent être liés à l'effondrement de cavités souterraines. La base BDCavités mise en place par le Ministère de l'Ecologie et du Développement Durable et gérée par le BRGM, permet le recueil, l'analyse et le porter à connaissance des informations relatives à la présence de cavités.


Aucune cavité n'est présente dans l'aire d'étude.

D'après la base de données du BRGM, le site à l'étude n'est pas concerné par une cavité à risque.

III.2.7. Foudre

Le niveau kéraunique (Nk) correspond au nombre d'orages et plus précisément, au nombre de coups de tonnerre entendus dans une zone donnée; sachant que la foudre frappe environ 1 fois pour 10 coups de tonnerre entendus. Cette mesure est très souvent la référence pour juger l'activité orageuse d'un secteur et pour définir les zones où la pose de protection foudre (parafoudre) devient obligatoire (Nk supérieur ou égale à 25). La carte du niveau kéraunique de France qui représente ce risque lié aux impacts de foudre indique que le département de la Vendée et par conséquent la zone d'étude sont concernés par moins de 25 Nk (10 Nk enregistré sur le département). Ce qui signifie qu'aucune mesure de protection de foudre n'est obligatoire sur le site du projet de sentier littoral.

La foudre ne représente pas de risque majeur sur le site.

Carte 6 : Répartition des impacts de foudre sur le territoire français métropolitain (Source : Météorage)

III.2.8. Aléa inondation

L'inondation est une submersion, rapide ou lente, d'une zone habituellement hors d'eau. Le risque d'inondation est la conséquence de deux composantes : l'eau qui peut sortir de son lit habituel d'écoulement et l'homme qui s'installe dans l'espace alluvial pour y implanter toutes sortes de constructions, d'équipements et d'activités. La typologie établie par le dossier départemental des risques majeurs différencie les inondations de plaine, les inondations par remontée de nappe, les crues des rivières torrentielles et des torrents, les crues rapides des bassins périurbains.

Les communes de Château-Guibert, Les Pineaux et Thorigny ne font pas l'objet d'un Plan de Prévention des Risques Naturels d'Inondations (PPRnI) et ne sont pas concernées par un Atlas des Zones Inondables (AZI). La commune de Château-Guibert est concerné par le risque inondation lié au risque de rupture de barrage du Marillet localisé à plus de 2,2 km au sud de l'aire d'étude immédiate. L'onde de rupture ne recoupe pas l'aire d'étude immédiate. L'aire d'étude n'est donc pas exposée au risque inondation par débordement de cours d'eau.

III.2.9. Aléa remontée de nappes

Il convient également de noter que des zones sensibles aux remontées de nappe sont susceptibles d'être présentes sur les communes de Château-Guibert, Les Pineaux et Thorigny. Ce phénomène survient lorsque à la suite d'une recharge exceptionnelle des nappes phréatiques, le niveau de la nappe atteint la surface du sol. Des zones sensibles à ce phénomène ont été cartographiées par le BRGM à l'échelle nationale. L'échelle d'exploitation de cette cartographie ne peut être supérieure au 1/100 000e et il n'est donc pas possible d'indiquer avec certitude la sensibilité aux remontées de nappe présente au niveau de l'aire d'étude immédiate. L'analyse de ces zones met en évidence qu'une majeure partie de l'aire d'étude immédiate est potentiellement sujette aux inondations de cave.

L'aire d'étude immédiate n'est pas concernée par le risque inondation lié au risque de rupture de barrage du Marillet. L'aire d'étude immédiate se situe, en grande partie, dans des zones potentiellement sujettes aux inondations de cave.

III.2.10.Tempêtes

Une tempête résulte de la confrontation de deux masses d'air aux caractéristiques distinctes (température, taux d'humidité relative). Ce phénomène génère alors des vents pouvant être très violents et destructeurs. Aux vents peuvent s'ajouter des pluies importantes pouvant être à l'origine d'inondations ou de coulées de boue. La population est avertie des risques de tempêtes par des bulletins d'alerte météorologiques diffusés par Météo France.

Parmi les catastrophes naturelles susceptibles de survenir sur la zone d'étude, la tempête est celle pouvant engendrer le plus d'incidence sur un parc éolien. Selon l'échelle de Beaufort, le temps est considéré comme « tempête » quand la vitesse du vent se situe entre 89 et 102 km/h.

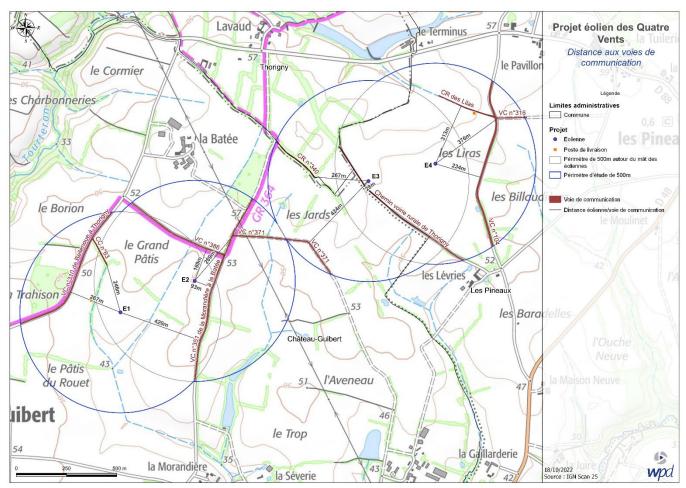
L'aire d'étude immédiate, située entre Nantes, Poitiers, l'Ile d'Yeu et la Pointe de Chassiron, présenterait donc globalement un nombre moyen par an de jours pouvant aller de 0,8 à 8,8 jours. Elle est toutefois moins concernée par les tempêtes que les secteurs côtiers par exemple. Toutefois, l'information préventive concerne l'ensemble du territoire. En effet, les tempêtes survenues en décembre 1999 notamment, ont souligné qu'aucune partie du territoire n'est à l'abri du phénomène.

III.2.1. Incendie

Le SDIS de la Vendée (cf. courrier du 10/09/2018) n'observe pas de contraintes ou servitudes spécifiques remettant en cause le projet.

III.3. Environnement matériel

Les distances indiquées ci-après sont mesurées à partir du centre du mât de chacune des éoliennes.


III.3.1. Voies de communication

Le tableau suivant recense l'ensemble des réseaux de communication présents dans les limites du périmètre d'étude. Les infrastructures constituent des chemins ruraux ou des voies communales.

Tableau 4 : Caractérisation des voies de communication les plus proches du parc éolien des Quatre Vents

Infrastructure	Fonction	Evènement redouté	Danger potentiel	Distance par rapport au mât des éoliennes les plus proches (en m)
Chemins ruraux et voies communales	Transport	Accident entrainant la sortie de voie d'un ou plusieurs véhicules	Energie cinétique des véhicules et flux thermique	Voie communale n°310 (267 m de E1)

La distinction entre chemin agricole (ou chemin d'exploitation) et chemin rural repose le statut juridique des voies. Leur fréquentation est faible.

Carte 7: Distance aux voiries

III.3.2. Emprises et réseaux publics et privés

D'après la consultation des bases de données « Réseau et canalisations », de l'Agence Nationale des Fréquences et de opérateurs téléphoniques, il n'existe aucune servitude susceptible d'impacter ou d'être impactée par le projet. Une ligne électrique Ht et une ligne 225kV aérienne sont cependant présentent.

Les consultations n'ont pas révélé l'existence de réseau de distribution de gaz dans le périmètre de 500 mètres autour des éoliennes.

III.3.3. Autres ouvrages publics

Aucun autre ouvrage public n'a été répertorié dans le périmètre d'étude.

Il est important de rappeler que le danger sur les infrastructures proches est faible lors de la phase d'exploitation du par éolien. Les risques lors de la phase chantier ne sont pas traités dans la présente étude de dangers.

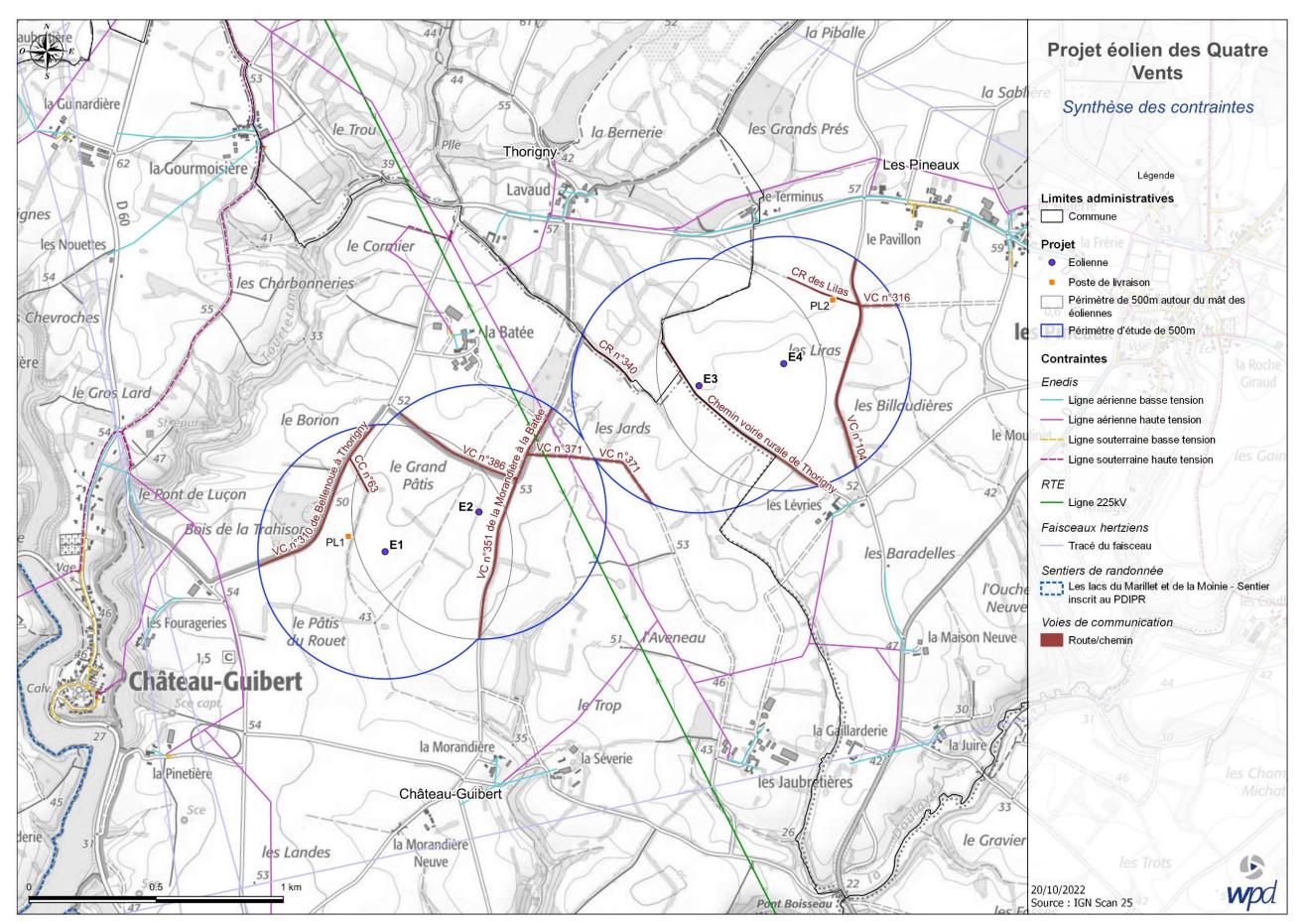
IV. Cartographie de synthèse

La carte de synthèse de contrainte est présente sur la page suivante.

Le nombre de personnes exposées est renseigné selon la fiche n°1 « Eléments pour la détermination de la gravité dans les études de dangers » de la circulaire du 10 mai 2010 (présentée en annexe 1).

Zones correspondant à une densité de 1 personne par tranche de 100 ha

Dans le périmètre d'étude de 500 mètres autour des éoliennes, on trouve en majeure partie des zones non aménagées pe à très peu fréquentées (champs, boisements, etc.). Cette catégorie correspond à une densité de 1 personne par tranche d 100 ha.


Zones correspondant à une densité de 1 personne par tranche de 10 ha

En ce qui concerne les voies présentes sur le site, il s'agit, des chemins ruraux et d'exploitation non goudronnés et des voies communales, correspondant à des zones aménagées mais peu à très peu fréquentées. On considère donc une fréquentation de 1 personne par tranche de 10 ha.

Localisation des biens, structures et autres établissements

Aucun ouvrage à destination d'habitation ne se situe dans le périmètre de 500 mètres autour des éoliennes. La maison la plus proche est située à plus de 584 m de l'éolienne la plus proche (Les Lévries, Les Pineaux).

nces et des t. Une ligne			
autour des			
ion du parc			
ité dans les			
nagées peu tranche de			
-			
et des voies équentation			
aison la plus			
	15		
	5		

Carte 8 : Synthèse des contraintes

V. Description de l'installation

Ce chapitre a pour objectif de caractériser l'organisation et le fonctionnement de l'installation envisagée, afin de permettre d'identifier les principaux potentiels de danger qu'elle représente, au regard notamment de la sensibilité de l'environnement décrit précédemment.

V.1. Caractéristiques de l'installation

V.1.1. Caractéristiques générales d'un parc éolien

Un parc éolien est une centrale de production d'électricité à partir de l'énergie du vent. Il est composé de plusieurs aérogénérateurs et de leurs annexes (cf. schéma du raccordement électrique au paragraphe V.3.1):

- Plusieurs éoliennes fixées sur une fondation adaptée, accompagnée d'une aire stabilisée appelée « plateforme » ou « aire de grutage » ;
- Un réseau de câbles électriques enterrés permettant d'évacuer l'électricité produite par chaque éolienne vers le ou les poste(s) de livraison électrique (appelé « réseau inter-éolien ») ;
- Un ou plusieurs poste(s) de livraison électrique, concentrant l'électricité des éoliennes et organisant son évacuation vers le réseau public d'électricité au travers du poste source local (point d'injection de l'électricité sur le réseau public);
- Un réseau de câbles enterrés permettant d'évacuer l'électricité regroupée au(x) poste(s) de livraison vers le poste source (appelé « réseau externe » et appartenant le plus souvent au gestionnaire du réseau de distribution d'électricité);
- Un réseau de chemins d'accès ;
- Éventuellement des éléments annexes type mât de mesure de vent, aire d'accueil du public, aire de stationnement, etc.

V.1.2. Eléments constitutifs d'un aérogénérateur

Au sens de l'arrêté du 22 juin 2020 portant modification des prescriptions relatives aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement et qui modifie l'arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement, dit par la suite « arrêté du 26 août 2011 modifié», les aérogénérateurs (ou éoliennes) sont définis comme un dispositif mécanique destiné à convertir l'énergie du vent en électricité, composé des principaux éléments suivants : un mât, une nacelle, un rotor auquel sont fixées des pales, ainsi que, le cas échéant, un transformateur.

Les aérogénérateurs se composent de trois principaux éléments :

- Le rotor est composé de trois pales (pour la grande majorité des éoliennes actuelles) construites en matériaux composites et réunies au niveau du moyeu. Il se prolonge dans la nacelle pour constituer l'arbre lent.
- Le mât est généralement composé de 3 à 4 tronçons en acier ou 15 à 20 anneaux de béton surmonté d'un ou plusieurs tronçons en acier. Dans la plupart des éoliennes, il abrite le transformateur qui permet d'élever la tension électrique de l'éolienne au niveau de celle du réseau électrique.
- La nacelle abrite plusieurs éléments fonctionnels :
 - o Le générateur qui transforme l'énergie de rotation du rotor en énergie électrique ;
 - Le multiplicateur (certaines technologies n'en utilisent pas);
 - Le système de freinage mécanique ;
 - Le système d'orientation de la nacelle qui place le rotor face au vent pour une production optimale d'énergie;
 - Les outils de mesure du vent (anémomètre, girouette);
 - o Le balisage diurne et nocturne nécessaire à la sécurité aéronautique.

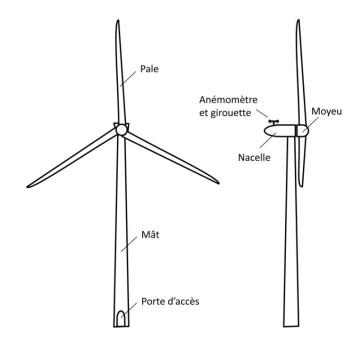


Figure 5 : Schéma simplifié d'un aérogénérateur

V.1.3. Emprise au sol

Plusieurs emprises au sol sont nécessaires pour la construction et l'exploitation des parcs éoliens :

- La surface de chantier est une surface temporaire, durant la phase de construction, destinée aux manœuvres des engins et au stockage au sol des éléments constitutifs des éoliennes.
- La fondation de l'éolienne est recouverte de terre végétale. Ses dimensions exactes sont calculées en fonction des aérogénérateurs choisis et des propriétés du sol.
- La zone de surplomb ou de survol correspond à la surface au sol au-dessus de laquelle les pales sont situées, en considérant une rotation à 360° du rotor par rapport à l'axe du mât.
- La plateforme correspond à une surface permettant le positionnement de la grue destinée au montage et aux opérations de maintenance liées aux éoliennes. Sa taille varie en fonction des éoliennes choisies et de la configuration du site d'implantation.

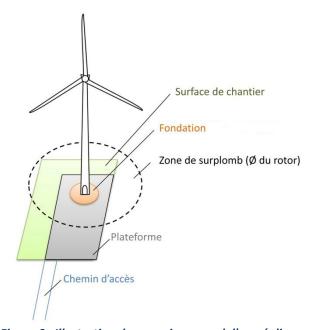


Figure 6 : Illustration des emprises au sol d'une éolienne

V.1.4. Chemins d'accès

Pour accéder à chaque aérogénérateur, des pistes d'accès sont aménagées pour permettre aux véhicules d'accéder aux éoliennes aussi bien pour les opérations de constructions du parc éolien que pour les opérations de maintenance liées à l'exploitation du parc éolien :

- L'aménagement de ces accès concerne principalement les chemins agricoles existants ;
- Si nécessaire, de nouveaux chemins sont créés sur les parcelles agricoles.

Durant la phase de construction et de démantèlement, les engins empruntent ces chemins pour acheminer les éléments constituants les éoliennes et leurs annexes.

Durant la phase d'exploitation, les chemins sont utilisés par des véhicules légers (maintenance régulière) ou par des engins permettant d'importantes opérations de maintenance (ex : changement de pale).

V.1.5. Raccordement électrique souterrain

Le raccordement électrique souterrain est le réseau de câbles interne au parc éolien. Il permet de diriger l'électricité produite par les éoliennes vers les postes de livraison.

Le raccordement électrique souterrain sera établi suivant les prescriptions de l'arrêté technique du 17 mai 2001 fixant les conditions techniques auxquelles doivent satisfaire les réseaux de distribution d'énergie électrique.

Les ouvrages seront conçus et réalisés suivant l'état de l'art, la réglementation et les normes en vigueurs, notamment les normes NF C 15-100 (installations électriques basse tension), NF C 13-100 (postes de livraison), NF C 13-200 (installations électriques haute tension), NF C 33-226 (conception des câbles) et NF C 20-030 (protection contre les chocs électriques). Des informations plus détaillées concernant le réseau électrique souterrain (caractéristiques techniques, longueurs de tranchées, etc.) figurent en annexe de la présente étude.

V.1.6. Activité de l'installation

L'activité principale du parc éolien des Quatre Vents est la production d'électricité à partir de l'énergie mécanique du vent, avec des éoliennes de 180 m de hauteur totale au maximum. Cette installation est donc soumise à la rubrique 2980 des installations classées pour la protection de l'environnement.

V.1.7. Composition de l'installation

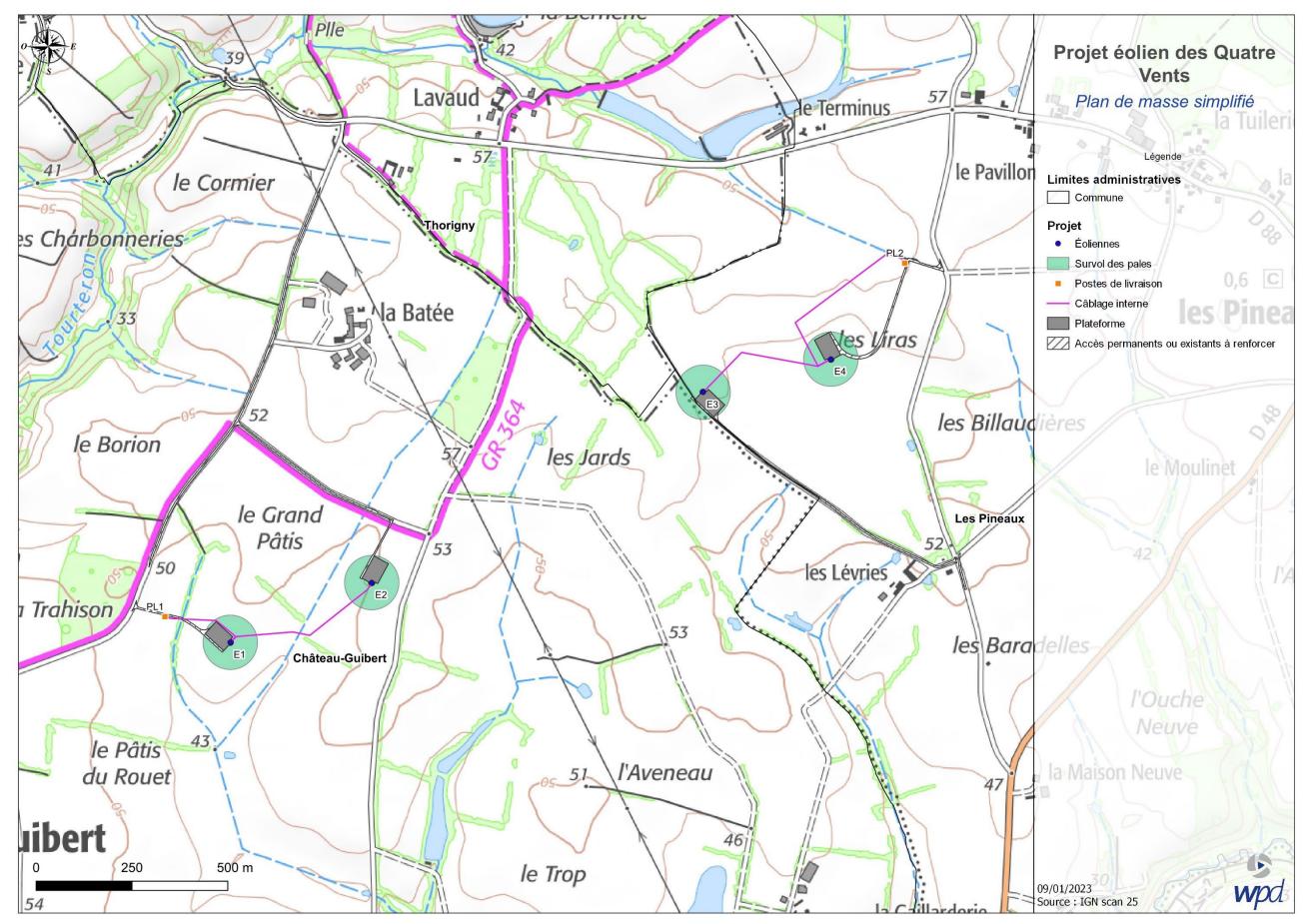
Le parc éolien des Quatre Vents est constitué de quatre aérogénérateurs et de deux postes de livraison, situés sur des parcelles agricoles à environ 20 km au sud-est de La Roche-sur-Yon, sur le territoire des communes de Château-Guibert et les Pineaux (Vendée). Il est envisagé, au moment de la rédaction de cette étude différents types d'aérogénérateurs dont le gabarit maximal est de 180 mètres en bout de pale, la puissance nominale maximale de 5 MW, la hauteur de moyeu comprise entre 105 et 115 mètres et le rotor de 140 mètres de diamètre maximal.

Dans un souci de maximisation des risques, l'étude détaillée des risques sera effectuée en utilisant les caractéristiques suivantes :

- Hauteur maximale totale en bout de pales : Ht = 180 m ;
- Rayon maximal du rotor : R = 70 m
- Hauteur maximale du moyeu : H = 110 m ;
- Largeur du mât : L = 5 m ;
- Largeur maximisée de la pale : LB = 4,5 m.

Le tableau suivant indique les coordonnées géographiques des six aérogénérateurs et des trois postes de livraison dans le système de coordonnées Lambert 93 :

Tableau 5 : Coordonnées géographiques (Lambert 93) des éoliennes et des postes de livraison du parc éolien


Eolienne	Hauteur bout de pale (m)	x	Y	Altitude au sol (m NGF)
E1	180	376 891	6 618 059	50
E2	180	377 360	6 618 215	52
E3	180	378 124	6 618 711	57
E4	180	378 457	6 618 798	55
PL1	-	376 721	6 618 125	47
PL2	-	378 648	6 619 046	55

Le raccordement électrique au réseau public de l'installation se fera en réseau enterré (20 kV) jusqu'aux postes de livraison. Les postes de livraison (PL) sont localisés à proximité de la voie communale n°310 pour le poste de livraison n°1, à proximité de l'éolienne E1. Le long du chemin rural des Lilas pour le poste de livraison n°2 à proximité de l'éolienne E4.

L'accès aux éoliennes nécessitera la création de piste et le renforcement ou l'élargissement de certaines pistes. Ces pistes doivent être suffisamment larges (4,5 mètres au maximum) pour permettre l'acheminement de toupies béton et de transporteurs lourds (grue de levage, composants des éoliennes). Ces accès seront carrossables et permettront aux services d'incendie et de secours d'intervenir, comme le prévoit l'Article 7 de l'arrêté du 26 août 2011 modifié applicable aux éoliennes terrestres soumises à autorisation au titre de la rubrique 2980 de la nomenclature des installations classées.

Des plateformes de montage (voir plan de masse page suivante), localisées au pied de chaque éolienne, existeront pour la construction, et seront réduites si possible après les travaux. Les surfaces correspondent à des aires stabilisées de faible pente sur lesquelles les engins de terrassement et d'approvisionnement peuvent évoluer. Elles servent également aux grues qui vont assembler les éoliennes. Le revêtement est sensiblement identique à celui des voies d'accès.

Carte 9 : Plan de masse du projet éolien des Quatre Vents

V.2. Fonctionnement de l'installation

V.2.1. Fonctionnement des aérogénérateurs et systèmes de sécurité

Les données telles que la direction et la vitesse du vent sont mesurées en continu pour adapter le mode de fonctionnement de l'éolienne en conséquence.

La commande d'orientation de l'éolienne commence à fonctionner même en dessous de la vitesse de démarrage.

La direction du vent est mesurée en continu par la girouette. Si la déviation entre l'axe du rotor et la direction mesurée du vent est trop grande, la position de la nacelle est corrigée par la commande d'orientation. L'ampleur de la rotation et le temps imparti avant que la nacelle ne soit mise dans la bonne position dépendent de la vitesse du vent.

Si l'éolienne a été arrêtée manuellement ou par son système de commande, les pales sont mises progressivement en position drapeau, réduisant la surface utile des pales exposée au vent. L'éolienne continue de tourner et passe progressivement en fonctionnement au ralenti.

V.2.2. Démarrage de l'éolienne

90 secondes après le démarrage de l'éolienne par le vent, les pales du rotor sont sorties de la position drapeau et sont mises en mode de « fonctionnement au ralenti ». L'éolienne tourne alors à faible vitesse.

La procédure de démarrage automatique est lancée lorsque la vitesse moyenne du vent mesurée pendant 3 minutes consécutives est supérieure à la vitesse de vent requise pour le démarrage (3 m/s).

L'énergie produite est injectée sur le réseau de distribution dès que la limite inférieure de la plage de vitesse est atteinte. La connexion au réseau par le biais d'un circuit intermédiaire de courant continu et de convertisseurs évite les courants de démarrage élevés pendant la procédure de démarrage.

V.2.3. Fonctionnement normal

Dès que la phase de démarrage de l'éolienne est terminée, l'éolienne est en fonctionnement normal. Les conditions de vent sont relevées en permanence pendant ce temps. La vitesse de rotation, le débit de puissance et l'angle des pales sont constamment adaptés aux changements du régime des vents, la position de la nacelle est ajustée en fonction de la direction du vent et l'état de tous les capteurs est enregistré. La puissance électrique est contrôlée par l'excitation du générateur. Audessus de la vitesse de vent pour laquelle la puissance nominale est atteinte, la vitesse de rotation est également maintenue à une valeur nominale par le réglage de l'angle des pales.

En cas de températures extérieures et de vitesses de vent élevées, le système de refroidissement se met en route.

V.2.4. Fonctionnement en charge partielle

En fonctionnement en charge partielle, la vitesse et la puissance sont adaptées en permanence aux changements du régime des vents. Dans la plage supérieure de charge partielle, l'angle des pales du rotor est modifié de quelques degrés pour éviter une distorsion de l'écoulement (effet de décrochage).

Le régime de rotation et la puissance augmentent au fur et à mesure de l'augmentation de la vitesse du vent.

V.2.5. Fonctionnement de régulation

Au-dessus de la vitesse de vent pour laquelle la puissance nominale est atteinte, la vitesse de rotation est maintenue à une valeur proche de sa valeur nominale grâce au réglage de l'angle des pales, et la puissance prélevée dans le vent est limitée (« mode de commande automatique »).

Le changement requis de l'angle des pales est déterminé après analyse du régime de rotation et de l'accélération, puis transmis à l'entraînement d'inclinaison des pales. La puissance conserve ainsi sa valeur nominale. L'éolienne s'arrête si la vitesse du vent atteint 25 m/s (cf. « Arrêt automatique »).

V.2.6. Fonctionnement au ralenti

Si l'éolienne est arrêtée (par exemple en raison de l'absence de vent ou suite à un dérangement), les pales se mettent généralement dans une position de 60° par rapport à leur position opérationnelle. L'éolienne tourne alors à faible vitesse. Si la vitesse de ralenti est dépassée (moins de 3 tr/min environ), les pales de rotor s'inclinent pour se mettre en position drapeau. Ces conditions portent le nom de « fonctionnement au ralenti ». Le fonctionnement au ralenti réduit les charges et permet à l'éolienne de redémarrer dans de brefs délais. Un message d'état indique la raison pour laquelle l'éolienne a été arrêtée, passant donc en fonctionnement au ralenti.

V.2.7. Arrêt de l'éolienne

L'éolienne peut être arrêtée manuellement (interrupteur Marche/Arrêt) ou en actionnant le bouton d'arrêt d'urgence.

Le système de commande arrête l'éolienne en cas de dérangement, ou encore si les conditions de vent sont défavorables (voir figure ci-dessous).

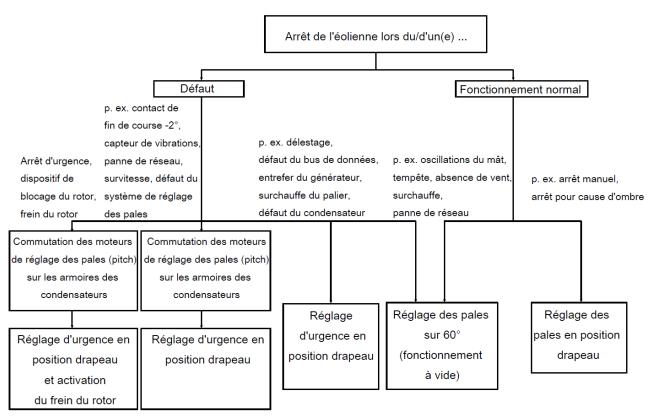


Figure 7 : Arrêt d'une éolienne (Source : ENERCON)

V.2.8. Arrêt automatique

En mode automatique, les éoliennes sont freinées de façon aérodynamique par la seule inclinaison des pales. Les pales inclinées du rotor réduisent les forces aérodynamiques, freinant ainsi ce dernier. Les dispositifs d'inclinaison des pales (Pitch) peuvent décrocher les pales du vent en l'espace de quelques secondes seulement en les mettant en position drapeau.

L'éolienne s'arrête si la vitesse moyenne du vent dépasse les 25 m/s sur une durée de 3 minutes ou si une valeur moyenne de 30 m/s est atteinte sur 15 secondes. Si nécessaire, ces limites peuvent être modifiées dans le système de contrôle de l'éolienne. Pour des raisons de protection de l'éolienne, l'augmentation des vitesses de coupure est cependant limitée assez rigoureusement. L'éolienne redémarre si la vitesse du vent repasse sous la vitesse de coupure et si dans les 10 minutes suivant l'arrêt, aucun de ces deux évènements n'est survenu. Si nécessaire, il est possible adapter cette période dans le système de contrôle de l'éolienne.

L'éolienne s'arrête également automatiquement en cas de défaillance, et lors de certains événements. Certaines défaillances entraînent une coupure rapide par les alimentations de secours des pales, d'autres pannes conduisent à un arrêt normal de l'éolienne.

Selon le type de défaillance, l'éolienne peut redémarrer automatiquement. Dans tous les cas, les convertisseurs sont découplés galvaniquement du réseau pendant la procédure d'arrêt.

Lorsqu'un capteur de sécurité signale un défaut ou qu'un interrupteur correspondant se déclenche, l'éolienne est immédiatement stoppée. Les armoires de commande des pales dissocient chaque moteur de réglage des pales. Ces armoires permettent également de commuter les contacteurs présents dans chaque boitier du rotor via des armoires de condensateurs. Les pales se mettent alors en drapeau indépendamment les unes des autres.

Lors d'un freinage d'urgence du rotor, en cas d'incendie par exemple, un frein rotor électromécanique est utilisé en plus. Un arrêt du rotor depuis sa puissance nominale s'effectue en 10 à 15 secondes.

V.2.9. Arrêt manuel

L'éolienne peut être arrêtée à l'aide de l'interrupteur Marche/Arrêt (armoire de commande). Le système de commande tourne alors les pales du rotor pour les décrocher du vent et l'éolienne ralentit puis s'arrête. Le frein d'arrêt n'est pas activé et la commande des yaw (moteur d'orientation) reste active. L'éolienne peut donc continuer à s'adapter avec précision au vent.

V.2.10. Arrêt manuel d'urgence

Si nécessaire, l'éolienne peut être stoppée immédiatement, en appuyant sur le bouton d'arrêt d'urgence (armoire de commande). Ce bouton déclenche un freinage d'urgence sur le rotor, avec une inclinaison rapide par l'intermédiaire des unités de réglage des pales et de freinage d'urgence. Le frein d'arrêt mécanique est actionné simultanément. L'alimentation électrique de tous les composants reste assurée.

Une fois l'urgence passée, le bouton d'arrêt d'urgence doit être réarmé pour permettre le redémarrage l'éolienne.

Si l'interrupteur principal de l'armoire de commande est mis en position d'arrêt, tous les composants de l'éolienne, à l'exception de l'éclairage du mât et de l'armoire électrique, ainsi que les différents interrupteurs d'éclairage et les connecteurs mobiles, sont déconnectés. L'éolienne déclenche l'inclinaison rapide des pales par l'intermédiaire des dispositifs d'inclinaison d'urgence. Le frein d'arrêt mécanique n'est pas activé lorsque l'interrupteur principal est actionné.

V.2.11. Absence de vent

Si l'éolienne est en service, mais que l'absence de vent fait trop ralentir le rotor, l'éolienne passe en mode de fonctionnement au ralenti par l'inclinaison lente des pales du rotor dans une direction de 60°. L'éolienne reprend automatiquement son fonctionnement une fois que la vitesse de vent de démarrage est de nouveau atteinte.

V.2.12. Tempête / Système « Storm Control »

Certains constructeurs d'éoliennes disposent d'un système de contrôle spécial leur permettant de fonctionner par temps de tempête. Ceci signifie que, par vents très forts, l'éolienne travaille en mode bridé, ce qui évite les arrêts qui conduiraient à des pertes de production considérables.


Lorsque le mode tempête est activé, la vitesse nominale est réduite linéairement pour une vitesse de vent définie pour chaque type d'éolienne. La limitation de la vitesse nominale a comme conséquence la réduction de la puissance à partir d'une autre vitesse de vent spécifique au type d'éolienne. L'éolienne est uniquement arrêtée à partir d'une vitesse de vent supérieure à 34 m/s (valeur moyenne sur 10 minutes). A titre de comparaison, lorsque le mode tempête est désactivé, l'éolienne est arrêtée à une vitesse de vent de 25 m/s (valeur moyenne sur 3 minutes).

À part une croissance du rendement, le mode tempête a une influence positive sur la stabilité du réseau électrique étant donné que les éoliennes réduisent graduellement la puissance injectée en évitant de la suspendre brusquement.

Lorsque le mode tempête est activé, il est possible de sélectionner la possibilité de réglage nommée ci-dessus mais elle ne sera cependant pas analysée par le système de commande. Puis la vitesse de rotation est réduite linéairement depuis une vitesse de vent définie pour chaque type d'éolienne.

La limitation de la vitesse de rotation du rotor a comme conséquence la réduction de la puissance à partir d'une vitesse de vent spécifique au type d'éolienne (V4).

L'éolienne s'arrête de produire à partir d'une vitesse de vent V5 de 34 m/s (valeur moyenne sur 10 minutes).

V ₁	Vitesse du vent de démar- rage	_	Vitesse de rotation n
V_2	Vitesse nominale du vent	_	Puissance active P
V_3	Vitesse de coupure du vent lorsque le mode tem- pête est désactivé	n ₁	Plage de la vitesse de rotation à vide
V_4	Début de la réduction de puissance	n ₂	Vitesse de rotation nomi- nale lors de la puissance nominale
V ₅	Vitesse de coupure du vent lorsque le mode tem- pête est activé	Pn	Puissance nominale

Figure 8 : Modes de fonctionnement : courbes de puissance en fonction de la vitesse du vent (Source : Guide technique, SER – FEE – INERIS)

V.2.13. Dévrillage des câbles

Les câbles de puissance et de commande de l'éolienne se trouvant dans le mât sont passés depuis la nacelle sur un dispositif de guidage et fixés aux parois du mât.

Les câbles ont suffisamment de liberté de mouvement pour permettre à la nacelle de tourner plusieurs fois dans la même direction autour de son axe, ce qui entraîne toutefois progressivement une torsion des câbles. Le système de commande de l'éolienne fait en sorte que les câbles vrillés soient automatiquement dévrillés.

Lorsque les câbles ont tourné deux ou trois fois autour d'eux-mêmes, le système de commande utilise la période de vent faible suivante pour les dévriller. Si le régime des vents rend cette opération impossible, et si les câbles se sont tournés plus de trois fois autour d'eux-mêmes, l'éolienne s'arrête et les câbles sont dévrillés indépendamment de la vitesse du vent. Le dévrillage des câbles prend environ une demi-heure. L'éolienne redémarre automatiquement une fois les câbles dévrillés.

Les capteurs chargés de surveiller la torsion des câbles se trouvent dans l'unité de contrôle de la torsion des câbles. Le capteur est connecté à la couronne d'orientation par une roue de transmission et une boîte de vitesse. Toute variation de la position de la nacelle est transmise au système de commande.

En outre, deux interrupteurs de fin de course, un de chaque côté, gauche et droit, signalent tout dépassement de la plage opérationnelle autorisée dans une direction ou dans l'autre Cela évite que les câbles du mât ne vrillent encore davantage.

L'éolienne s'arrête et ne peut être redémarrée automatiquement.

V.2.14. Sécurité de l'installation

Les éoliennes sont conçues, fabriquées, installées et certifiées selon les exigences des normes IEC 61400-1 et IEC 61400-24, tel que requis par l'arrêté du 26 août 2011 modifié. Les éoliennes envisagées dans le cadre du parc éolien des Quatre Vents sont certifiées pour la classe II B ou III A suivant le modèle qui sera finalement retenu.

V.2.15. Système de freinage

En fonctionnement, les éoliennes sont exclusivement freinées d'une façon aérodynamique par inclinaison des pales en position drapeau. Pour ceci, les trois entraînements de pales indépendants mettent les pales en position de drapeau (c'est-àdire « les décrochent du vent ») en l'espace de quelques secondes. La vitesse de l'éolienne diminue sans que l'arbre d'entraînement ne soit soumis à des forces additionnelles.

Bien qu'une seule pale en drapeau (frein aérodynamique) suffise à stopper l'éolienne, cette dernière possède 3 freins aérodynamiques indépendants (un frein par pale).

Le rotor n'est pas bloqué même lorsque l'éolienne est à l'arrêt, il peut continuer de tourner librement à très basse vitesse. Le rotor et l'arbre d'entraînement ne sont alors exposés à pratiquement aucune force. En fonctionnement au ralenti, les paliers sont moins soumis aux charges que lorsque le rotor est bloqué.

L'arrêt complet du rotor n'a lieu qu'à des fins de maintenance et en appuyant sur le bouton d'arrêt d'urgence. Dans ce cas, un frein d'arrêt supplémentaire se déclenche lorsque le rotor freine partiellement, les pales s'étant inclinées. Le dispositif de blocage du rotor ne peut être actionné que manuellement et en dernière sécurité.

En cas d'urgence (par exemple, en cas de coupure du réseau), chaque pale du rotor est mise en sécurité en position de drapeau par son propre système de réglage de pale d'urgence alimenté par batterie. L'état de charge et la disponibilité des batteries sont garantis par un chargeur automatique.

V.2.16. Système de détection de survitesse

La machine possède 3 capteurs placés dans le support du rotor de la génératrice. Ce capteur est une masselotte montée sur ressort. Lorsque la force centrifuge du rotor est trop importante (cas de la survitesse), le déplacement de cette masselotte atteint un capteur situé en bout de course.

La détection de survitesse est alors enclenchée et les pales reviennent en position drapeau (le système coupe l'alimentation électrique des pitchs. Les condensateurs électriques du système de sécurité des pitchs se déchargent alors, activant la mise en drapeau des pales).

Les condensateurs sont contrôlés périodiquement et des tests de survitesse sont réalisés tous les ans.

Le redémarrage de l'éolienne suite à un arrêt par action du système de détection de survitesse nécessite un ré-enclenchement manuel dans la nacelle, après identification des causes.

Ce système intervient en plus des systèmes de sécurité prévenant un fonctionnement avec une défaillance sur la génératrice ainsi que du système « storm control ».

V.2.17. Protection foudre

L'éolienne est équipée d'un système parafoudre fiable afin d'éviter que l'éolienne ne subisse de dégâts.

Pour la protection parafoudre extérieure, la pointe de la pale est en aluminium moulé, le bord d'attaque et le bord de fuite de la pale du rotor sont équipés de profilés aluminium, reliés par un anneau en aluminium à la base de la pale. Un coup de foudre est absorbé en toute sécurité par ces profilés et le courant de foudre est dévié vers la terre entourant la base de l'éolienne.

Pour la protection interne de la machine, les composants principaux tels que l'armoire de contrôle et la génératrice sont protégés par des parasurtenseurs. Toutes les autres platines possédant leur propre alimentation sont équipées de filtres à haute absorption. La partie télécom est également protégée par des parasurtenseurs de lignes et une protection galvanique. Enfin, une liaison de communication télécom en fibre optique entre les machines permet une insensibilité à ces surtensions atmosphériques ou du réseau. De même, l'anémomètre est protégé et entouré d'un arceau.

V.2.18. Protection incendie

Tous les composants mécaniques et électriques de l'éolienne dans lesquels un incendie pourrait potentiellement se déclencher en raison d'une éventuelle surchauffe ou de court-circuit, sont continuellement surveillés par des capteurs lors du fonctionnement, et cela en premier lieu afin de s'assurer de leur bon fonctionnement. Si le système de commande détecte un état non autorisé, l'éolienne est stoppée ou continue de fonctionner mais avec une puissance réduite. Le choix des matériaux est également un aspect clé de la protection incendie, par la conception en matériaux ignifuges, difficilement, ou non inflammables pour certains composants.

Deux extincteurs manuels CO2 dédiés à la protection contre l'incendie dans l'éolienne sont situés dans la nacelle et au pied du

Par ailleurs, lors des interventions, les techniciens emmènent également un extincteur dans leur véhicule de service. Lorsqu'un capteur de sécurité signale un défaut ou qu'un interrupteur correspondant se déclenche, l'éolienne est immédiatement stoppée (cf. V.2.8. Arrêt automatique).

Les détecteurs de fumée et/ou les capteurs de température émettent des signaux qui sont immédiatement transmis au Service du constructeur par le système de surveillance à distance « SCADA » (Supervisory Control And Data Acquisition) qui alerte alors immédiatement l'exploitant, par un message SMS et/ou email, qui prévient alors les pompiers. Ces derniers décident sur place des actions à entreprendre. Le centre de service est occupé 24h/24, 7j/7 et par conséquent joignable à tout moment.

V.2.19. Système de détection de givre/glace

Dans certaines conditions météorologiques, les pales peuvent se recouvrir de glace, de givre ou d'une couche de neige. Ceci arrive le plus souvent lorsque l'air est très humide, ou en cas de pluie ou de neige et à des températures proches de 0°C.

Les dépôts de glace et de givre peuvent réduire le rendement et accroître la sollicitation du matériel (déséquilibre du rotor) et la nuisance sonore. La glace formée peut également présenter un danger pour les personnes et les biens en cas de chute ou de projection.

La commande de l'éolienne mesure, à l'aide de deux sondes de température indépendantes, la température de l'air sur la nacelle et en pied du mât, afin de détecter si les conditions sont propices à la formation de givre.

Les caractéristiques aérodynamiques des pales de rotor sont très sensibles aux modifications des contours et de la rugosité des profils de pale causées par le givre ou la glace. Le système de détection de givre/glace utilise la modification importante des caractéristiques de fonctionnement de l'éolienne (rapport vent/vitesse de rotation/puissance/angle de pale) en cas de formation de givre ou de glace sur les pales du rotor.

Lorsque la température dépasse +2 °C sur la nacelle, les rapports de fonctionnement spécifiques à l'éolienne (vent/puissance/angle des pales) sont identifiés comme étant des valeurs moyennes à long terme. Pour des températures inférieures à +2 °C (conditions de givre), les données de fonctionnement mesurées sont comparées aux valeurs moyennes à long terme.

Pour cela, une plage de tolérance, déterminée de manière empirique, est définie autour de la courbe de puissance de l'éolienne et de la courbe d'angle de pale. Celle-ci se base sur des simulations, des essais et plusieurs années d'expérience sur un grand nombre d'éoliennes de types variés. Si les données de fonctionnement concernant la puissance ou l'angle de pale sont hors de la plage de tolérance, l'éolienne est stoppée.

En cas de détection d'écarts de comportement de la machine, un compteur est incrémenté pour chaque mesure hors tolérance, à raison de 1 mesure par minute. Lorsque 30 mesures sont en dehors des tolérances, la machine s'arrête automatiquement pour détection de glace et envoi une alerte via le SCADA. Le délai maximum de 60 minutes de l'Article 25 de l'arrêté du 26 août 2011 modifié correspondant au passage des éoliennes à une régime ICPE soumis à autorisation est respecté.

Les paramètres analysés par le système de sécurité sont :

- La vitesse de vent pour une puissance donnée¹. La détection, l'alerte et l'arrêt se font dès la sortie de la machine de ces tolérances (Comme expliqué ci-dessus);
- La puissance produite, lorsque la machine fonctionne à sa puissance nominale²;
- Grâce à l'étroitesse de la plage de tolérance, la coupure a lieu généralement en moins d'une heure, avant que l'épaisseur de la couche de glace ne constitue un danger pour l'environnement de l'éolienne.

La plausibilité de toutes les mesures liées à l'éolienne est contrôlée en permanence par la commande de l'éolienne. Une modification non plausible d'une valeur de mesure est interprétée comme un dépôt de glace par la commande et l'éolienne est stoppée.

Le redémarrage de l'éolienne suit une procédure bien définie fournie.

V.2.20. Surveillance des principaux paramètres

Un système de surveillance complet garantit la sécurité de l'éolienne. Toutes les fonctions pertinentes pour la sécurité (par exemple : vitesse du rotor, températures, charges, vibrations) sont surveillées par un système électronique et, en plus, là où cela est requis, par l'intervention à un niveau hiérarchique supérieur de capteurs mécaniques. L'éolienne est immédiatement arrêtée si l'un des capteurs détecte une anomalie sérieuse.

Les alertes relatives au fonctionnement de la machine sont remontées automatiquement par le système SCADA des éoliennes. Un SMS et un courrier électronique est envoyé au personnel de wpd windmanager, succursale française du groupe wpd chargé des aspects techniques et opérationnels de l'exploitation des parcs éoliens, et au constructeur en charge de la maintenance en cas d'alerte, 7j/7 et 24h/24. De même, le constructeur en charge de la maintenance est informé de toute alerte via les informations remontant par le système SCADA des éoliennes.

Le cas échéant, le personnel de maintenance habilité intervient alors sur site.

Les nombreux capteurs de température implantés dans les équipements de la nacelle permettent également la mise à l'arrêt de l'éolienne sur détection d'une température anormalement haute, ce qui permet la mise en sécurité (freinage aérodynamique de l'éolienne) de l'éolienne en cas d'échauffement matériel ou en cas de départ d'incendie (compte tenu de la répartition des équipements dans le volume de la nacelle, un éventuel départ d'incendie est susceptible d'être détecté en tout point).

La réponse est efficace en quelques dizaines de secondes selon les conditions, ce qui est une réponse adaptée à la cinétique des phénomènes envisagés.

V.2.21. Opérations de maintenance de l'installation

L'installation est conforme aux prescriptions de l'arrêté ministériel du 26 août 2011 modifié relatif aux installations soumises à autorisation au titre de la rubrique 2980 des installations classées en matière d'exploitation (articles 12 à 21). La maintenance

des éoliennes sera assurée par le constructeur ou par un prestataire extérieur. Le suivi de production sera quant à lui assuré par wpd windmanager.

Un système de surveillance à distance ou « SCADA » permet d'assurer un suivi en temps réel du fonctionnement de l'éolienne et d'intervenir rapidement en cas de dysfonctionnement. Il permet également de relancer aussitôt les éoliennes si les paramètres requis sont validés et les alarmes traitées. Cependant, en cas d'arrêt liés à des déclenchements de capteurs de sécurité (déclenchement détecteur d'arc ou d'incendie, pression basse, huile, etc.), une intervention humaine sur l'éolienne est nécessaire pour examiner l'origine du défaut et acquitter l'alarme avant de pouvoir relancer un démarrage.

La société wpd windmanager, succursale française de wpd pour assurer la maintenance de ses parcs en exploitation, pourra assurer cette surveillance continue via le système SCADA. Les techniciens sont basés à Arras, Nantes et Brême en Allemagne. Les numéros de téléphone à contacter en cas d'urgence sont indiqués au pied de chaque éolienne.

Généralement, un programme de maintenance s'établit à trois niveaux préventifs :

- Niveau 1 : vérification semestrielle des équipements mécaniques et hydrauliques ;
- Niveau 2 : vérification annuelle des matériaux (soudures, corrosions), de l'électronique et des éléments de raccordement électrique ;
- Niveau 3 : vérification tous les quatre ans de plus grande ampleur pouvant inclure le remplacement de pièces.

Chacune des interventions sur les éoliennes ou leurs périphériques fait l'objet de l'arrêt du rotor pendant toute la durée des opérations. La première année d'exploitation est sujette à un plus grand nombre d'interventions. Elles servent à affiner les paramètres de réglages des éoliennes. Une série de visites de maintenance corrective est à prévoir. Par la suite, tout changement dans la production ou avarie technique sera indiquée via le système de supervision à l'exploitant du parc et fera l'objet d'une intervention de l'équipe de techniciens.

La majorité des interventions est constituée d'opérations mineures pour lesquelles les techniciens interviennent en équipe de 2 sur le site. Si des pièces doivent être remplacées, un treuil situé dans la nacelle facilite la manipulation. En revanche, pour certaines interventions plus exceptionnelles (remplacement d'une pale ou d'éléments importants de la nacelle), la présence d'une grue est nécessaire.

V.2.22. Inspection visuelle

Lors des inspections visuelles, les points particuliers de vigilance sont axés sur les aspects suivants :

- Corrosion ;
- Dommages mécaniques (par ex. fissures, déformation, écaillage, câbles usés);
- Fuites (huile, eau);
- Unités incomplètes ;
- Encrassement / corps étrangers.

Ces opérations d'inspection sont faites au moins une fois par an.

V.2.23. Graissage d'entretien

Les opérations de graissage visent à s'assurer du bon état des pièces mobiles et d'assurer un appoint ou de vidanger les huiles et lubrifiants.

L'ensemble des points à vérifier est précisé dans le Plan de Maintenance relatif au graissage défini pour chaque modèle d'éolienne.

V.2.24. Maintenance électrique

Les opérations de maintenance électrique visent à s'assurer du bon fonctionnement de tous les équipements électriques actifs (transformateurs, éclairage, mises à jour logicielles, etc.) et passifs (mises à la terre, etc.).

supérieures à 10,5 m/s une tolérance sur la puissance produite permet donc de détecter les comportements déviant de la courbe de puissance normale (valeur de tolérance standard : 75 % ; minimale : 100 % ; maximale : 50 %).

¹ Détection efficace pour la partie de courbe correspondant à la montée en puissance vers sa valeur nominale (détection d'écart standard : +/- 1,2 m/s). Les paramètres de tolérances sont ajustables dans une plage de +/- 0,6 m/s à +/- 3 m/s.

² Une fois que la machine fonctionne à sa puissance nominale, la courbe de puissance présente un plateau sur une large plage de vitesse de vent, rendant inopérante la tolérance définie précédemment pour la détection de glace ou de givre. Ainsi, pour les vitesses de vent

L'ensemble des points à vérifier est précisé dans le Plan de Maintenance Electrique défini pour chaque modèle.

V.2.25. Maintenance mécanique

Lors des opérations de maintenance mécanique, les points particuliers de vigilance sont axés sur les aspects suivants :

- Panneaux d'avertissement ;
- Pied du mât / local des armoires électriques ;
- Fondations;
- Mât : échelle de secours, ascenseurs de service, plateformes et accessoires, chemin et fixation de câbles, assemblages à vis ;
- Nacelle: treuil à chaîne, extincteurs et trousse de secours, système de ventilation, câbles, trappes, support principal, arbre de moyeu, transmissions d'orientation, contrôle d'orientation (« yaw »), couronne d'orientation, entrefer du générateur, groupe hydraulique, frein électromécanique, dispositif de blocage du rotor, assemblages à vis, etc.;
- Tête du rotor : rotor, câbles et lignes, générateur, moyeu du rotor et adaptateur de pale, engrenage de réglage des pales (« pitch »), système de graissage centralisé, vis des pales du rotor, pales de rotor, etc. ;
- Système parafoudre ;
- Anémomètre ;
- Etc.

Ces opérations d'inspections sont faites au moins une fois par an.

V.2.26. Stockage et flux de produits dangereux

Conformément à l'article 16 de l'arrêté du 26 août 2011 modifié, aucun matériel inflammable ou combustible ne sera stocké dans les éoliennes du parc éolien des Quatre Vents.

V.3. Fonctionnement des réseaux de l'installation

V.3.1. Raccordement électrique

L'ensemble des réseaux électriques du parc éolien sera conforme à l'article 10 de l'arrêté du 26 août 2011.

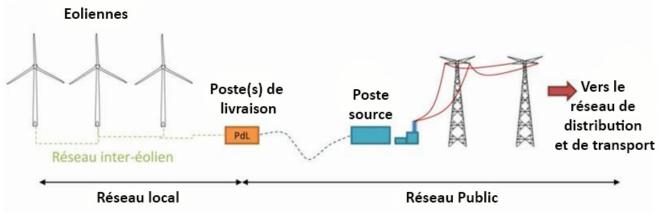


Figure 9 : Schéma de raccordement électrique d'un parc éolien

V.3.2. Le réseau inter-éolien

Le réseau inter-éolien permet de relier le transformateur, intégré dans le mât de chaque éolienne, au point de raccordement avec le réseau public. Ce réseau comporte également une liaison de télécommunication qui relie chaque éolienne au terminal de télésurveillance.

Ces câbles, conçus suivant la norme NFC 33-226, ont une tension nominale entre phases de 20 kV. Leur section, en aluminium, est de 240 mm². Ils constituent le réseau interne de la centrale éolienne, et sont enfouis à une profondeur minimale de 80 cm, conformément à la norme NFC 13-200.

V.3.3. Poste de livraison

Le poste de livraison est le nœud de raccordement de toutes les éoliennes avant que l'électricité ne soit injectée dans le réseau public. Dans le cas du parc éolien des Quatre Vents, trois postes de livraison seront nécessaires. Le poste de livraison est équipé d'appareils de comptage d'énergie indiquant l'énergie soutirée au réseau mais également celle injectée. Il comporte aussi la protection générale dont le but est de protéger les éoliennes et le réseau inter-éolien en cas de défaut sur le réseau électrique amont. Les installations électriques du poste de livraison sont conformes à la norme NFC 13-100.

V.3.4. Réseau électrique externe

Le réseau électrique externe relie les postes de livraison avec le poste source (réseau public de transport d'électricité). Ce réseau entièrement enterré est réalisé par le gestionnaire du réseau de distribution. Les caractéristiques des câbles utilisés sont sensiblement les mêmes que celles décrites pour le réseau inter-éolien (suivant la norme NFC 33-226, tension nominale entre phases 20 kV, section alu de 240 mm²).

Dans le cas du parc éolien des Quatre Vents, il existe plusieurs options de raccordement. La solution optimale sera retenue avant la construction de l'installation en concertation avec les gestionnaires de réseaux.

V.3.5. Autres réseaux

Le parc éolien des Quatre Vents ne comporte aucun réseau d'alimentation en eau potable ni aucun réseau d'assainissement. De même, les éoliennes ne sont reliées à aucun réseau de gaz.

VI. Identification des potentiels de dangers de l'installation

Ce chapitre de l'étude de dangers a pour objectif de mettre en évidence les éléments de l'installation pouvant constituer un danger potentiel, que ce soit au niveau des éléments constitutifs des éoliennes, des produits contenus dans l'installation, des modes de fonctionnement, etc.

L'ensemble des causes externes à l'installation pouvant entraîner un phénomène dangereux, qu'elles soient de nature environnementale, humaine ou matérielle, seront traitées dans l'analyse de risques.

VI.1. Potentiels de dangers liés aux produits

L'activité de production d'électricité par les éoliennes ne consomme pas de matières premières, ni de produits pendant la phase d'exploitation. De même, cette activité ne génère pas de déchet, ni d'émission atmosphérique, ni d'effluent potentiellement dangereux pour l'environnement.

Les produits identifiés dans le cadre du parc éolien des Quatre Vents sont utilisés pour le bon fonctionnement des éoliennes, leur maintenance et leur entretien :

- Produits nécessaires au bon fonctionnement des installations (graisses et huiles de transmission, huiles hydrauliques pour systèmes de freinage, etc.), qui une fois usagés sont traités en tant que déchets industriels spéciaux ;
- Produits de nettoyage et d'entretien des installations (solvants, dégraissants, nettoyants, etc.) et les déchets industriels banals associés (pièces usagées non souillées, cartons d'emballage, etc.).

Conformément à l'article 16 de l'arrêté du 26 août 2011 modifié relatif aux installations éoliennes soumises à autorisation, aucun produit inflammable ou combustible n'est stocké dans les aérogénérateurs ou les postes de livraison.

VI.1.1. Inventaire des produits

Les substances ou produits chimiques mis en œuvre dans l'installation sont limités. Les seuls produits présents en phase d'exploitation sont :

- L'huile hydraulique (circuit haute pression) dont la quantité présente est de l'ordre de 260 litres ;
- L'huile de lubrification du multiplicateur (environ 300 à 400 litres);
- L'eau glycolée (mélange d'eau et d'éthylène glycol), utilisée comme liquide de refroidissement, dont le volume total de la boucle est de 120 litres;
- Les graisses pour les roulements et systèmes d'entrainements ;
- L'hexafluorure de soufre (SF₆), qui est le gaz utilisé comme milieu isolant pour les cellules de protection électrique. La quantité présente varie entre 1,5 kg et 2,15 kg suivant le nombre de caissons composant la cellule.

D'autres produits peuvent être utilisés lors des phases de maintenance (lubrifiants, décapants, produits de nettoyage), mais toujours en faibles quantités (quelques litres au plus).

VI.1.2. Dangers des produits

❖ Inflammabilité et comportement vis-à-vis de l'incendie

Les huiles, les graisses et l'eau glycolée ne sont pas des produits inflammables. Ce sont néanmoins des produits combustibles qui sous l'effet d'une flamme ou d'un point chaud intense peuvent développer et entretenir un incendie. Dans les incendies d'éoliennes, ces produits sont souvent impliqués.

Certains produits de maintenance peuvent être inflammables mais ils ne sont introduits dans l'éolienne que pour les interventions et sont repris en fin d'opération.

Le SF₆ est pour sa part ininflammable.

* Toxicité pour l'homme

Ces divers produits ne présentent pas de caractère de toxicité pour l'homme. Ils ne sont pas non plus considérés comme corrosifs (à causticité marquée).

Vis-à-vis de l'environnement, le SF_6 possède un potentiel de réchauffement global (gaz à effet de serre) très important, mais les quantités présentes sont très limitées (seulement 1,5 à 2,15 kg de gaz dans les cellules de protection).

Les huiles et graisses, même si elles ne sont pas classées comme dangereuses pourl'environnement, peuvent en cas de déversement au sol ou dans les eaux entraîner une pollution du milieu.

En conclusion, il ressort que les produits ne présentent pas de réel danger, si ce n'est lorsqu'ils sont soumis à un incendie, où ils vont entretenir cet incendie, ou s'ils sont déversés dans l'environnement générant un risque de pollution des sols ou des eaux. Les produits utilisés ne sont donc pas retenus comme source potentielle de danger pour le parc éolien.

VI.2. Potentiels de dangers liés au fonctionnement de l'installation

Les dangers liés au fonctionnement du parc éolien des Quatre Vents sont de cinq types :

- Chute d'éléments de l'aérogénérateur (boulons, morceaux d'équipements, etc.) ;
- Projection d'éléments (morceau de pale, brides de fixation, etc.) ;
- Effondrement de tout ou partie de l'aérogénérateur ;
- Echauffement de pièces mécaniques ;
- Courts-circuits électriques (aérogénérateur ou poste de livraison).

Tableau 6 : Dangers potentiels recensés

Installation ou système	Fonction	Phénomène redouté	Danger potentiel
Système de transmission	Transmission d'énergie mécanique	Survitesse	Echauffement des pièces mécaniques et flux thermique
Pale	Prise au vent	Bris de pale ou chute de pale	Energie cinétique d'éléments de pales
Aérogénérateur	Production d'énergie électrique à partir d'énergie éolienne	Effondrement	Energie cinétique de chute
Poste de livraison, intérieur de l'aérogénérateur	Réseau électrique	Court-circuit interne	Arc électrique
Nacelle	Protection des équipements destinés à la production électrique	Chute d'éléments	Energie cinétique de projection
Rotor	Transformer l'énergie éolienne en énergie mécanique	Projection d'objets	Energie cinétique des objets
Nacelle	Protection des équipements destinés à la production électrique	Chute de nacelle	Energie cinétique de chute

VI.3. Réduction des potentiels de dangers à la source

VI.3.1. Principales actions préventives

L'ensemble des choix effectués au cours de la conception du projet permettent de réduire les potentiels de danger identifiés et de garantir une sécurité optimale de l'installation.

Choix de l'emplacement des installations

Les éoliennes sont situées au sein de parcelles agricoles, à plus de 584 mètres des habitations situées aux abords. L'environnement immédiat jusqu'à une hauteur de chute de chaque éolienne est constitué principalement de terrains agricoles. La fréquentation liée aux activités agricoles ne représentera qu'une faible fréquentation du site.

Choix des équipements

Le parc éolien des Quatre Vents est composé d'aérogénérateurs dont les caractéristiques sont adaptées au régime de vent sur le site.

Les dangers des équipements sont principalement dus au caractère mobile de ceux-ci (pièces en rotation) et à leur situation (à plusieurs dizaines de mètres au-dessus du sol). Ceci peut entraîner des chutes ou projection de pièces au sol.

Un autre danger est lié à la présence d'installations électriques avec des tensions élevées (jusqu'à 20 000 volts), dont le dysfonctionnement peut être à l'origine d'incendies.

Les équipements qui constituent à ce jour l'éolienne sont tous indispensables à son fonctionnement. Il n'est donc pas possible a priori de les substituer.

Depuis les débuts du développement de l'éolien, des évolutions technologiques ont permis de mettre en place des équipements plus performants en termes d'optimisation des rendements et de diminution des risques :

- Remplacement de pales métalliques par des pales en matériaux composites, plus légères et moins sujettes aux phénomènes de fatigue ;
- Dispositif d'orientation des pales permettant de fonctionner par vent faible et de diminuer les contraintes par vent fort ;
- Dispositif aérodynamique d'arrêt en cas de survitesse;
- Dispositifs de surveillance des dysfonctionnements électriques (détecteur d'arcs notamment). Ces évolutions se poursuivent toujours afin d'améliorer la sécurité.

❖ Substitution des produits par des produits moins dangereux et réduction des quantités

Les produits présents sur chaque éolienne (huile, fluide de refroidissement) sont des produits classiques utilisés dans ce type d'activité.

Ils ne présentent pas de caractère dangereux marqué et les quantités mises en œuvre sont adaptées aux volumes des équipements.

Le SF_6 est un très bon isolant et ne dispose pas à ce jour de produit de substitution présentant des qualités équivalentes. De plus, malgré son caractère de gaz à effet de serre, il ne présente pas de danger pour l'homme (ininflammable et non toxique). Il n'est donc pas prévu de solution de substitution. Il faut rappeler que ce gaz est contenu en petite quantité dans les cellules d'isolement disposées en pied d'éolienne (cellules étanches) qui sont des matériels du commerce, et ne sont pas fabriqués par le constructeur.

VI.3.2. Utilisation des meilleures techniques disponibles

L'Union Européenne a adopté un ensemble de règles communes au sein de la directive 96/61/CE du 24 septembre 1996 relative à la prévention et à la réduction intégrées de la pollution, dite directive IPPC (« Integrated Pollution Prevention and Control »), afin d'autoriser et de contrôler les installations industrielles.

Pour l'essentiel, la directive IPPC vise à minimiser la pollution émanant de différentes sources industrielles dans toute l'Union Européenne. Les exploitants des installations industrielles relevant de l'annexe I de la directive IPPC doivent obtenir des autorités des Etats-membres une autorisation environnementale avant leur mise en service.

Les installations éoliennes, ne consommant pas de matières premières et ne rejetant aucune émission dans l'atmosphère, ne sont pas soumises à cette directive.

Le parc éolien des Quatre Vents n'est pas soumis à la Directive IPPC.

VII. Analyse des retours d'expérience

Il n'existe actuellement aucune base de données officielle recensant l'accidentologie dans la filière éolienne. Néanmoins, il a été possible d'analyser les informations collectées en France et dans le monde par plusieurs organismes divers (associations, organisations professionnelles, littératures spécialisées, etc.). Ces bases de données sont cependant très différentes tant en termes de structuration des données qu'en termes de détail de l'information.

L'analyse des retours d'expérience vise donc ici à faire émerger des typologies d'accident rencontrés tant au niveau national qu'international. Ces typologies apportent un éclairage sur les scenarii les plus rencontrés. D'autres informations sont également utilisées dans la partie VIII. pour l'analyse détaillée des risques.

VII.1. Inventaire des accidents et incidents en France

Un inventaire des incidents et accidents en France a été réalisé à l'aide de plusieurs sources d'information. Il s'agit à la fois de sources officielles, d'articles de le presse locale ou de base de données mises en place par des associations :

- Rapport du Conseil Général des Mines (juillet 2004) ;
- Base de données ARIA du Ministère de l'Ecologie et du Développement Durable (http://www.aria.developpementdurable.gouv.fr);
- Communiqués de presse du SER-FEE et/ou des exploitants éoliens ;
- Site Internet de l'association « Vent de Colère » ;
- Site Internet de l'association « Fédération Environnement Durable » ;
- Articles de presse divers ;
- Données diverses fournies par les exploitants de parcs éoliens en France.

Dans le cadre de ce recensement, il n'a pas été réalisé d'enquête exhaustive directe auprès des exploitants de parcs éoliens français. Cette démarche pourrait augmenter le nombre d'incidents recensés, mais cela concernerait essentiellement les incidents les moins graves.

Dans l'état actuel, la base de données élaborée par le groupe de travail de SER/FEE ayant élaboré le guide technique d'élaboration de l'étude de dangers dans le cadre des parcs éoliens apparaît comme représentative des incidents majeurs ayant affecté le parc éolien français depuis l'année 2000. L'ensemble de ces sources permet d'arriver à un inventaire aussi complet que possible des incidents survenus en France. Un total de 63 incidents a pu être recensé entre 2000 et début 2019 (voir tableau détaillé en annexe 2). Ce tableau a été validé pour les évènements ayant eu lieu entre 2000 et 2012 par les membres du groupe de travail précédemment mentionné et il a été complété avec les évènements qui se sont produits après la parution du guide technique en juin 2012.

Il apparaît dans ce recensement que les aérogénérateurs accidentés sont principalement des modèles anciens ne bénéficiant généralement pas des dernières avancées technologiques.

Le graphique suivant montre la répartition des événements accidentels et de leurs causes premières sur le parc d'aérogénérateurs français entre 2000 et 2010. Cette synthèse exclut les accidents du travail et les événements qui n'ont pas conduit à des effets sur les zones autour des aérogénérateurs. L'identification des causes est nécessairement réductrice.

Dans ce graphique sont présentés :

- La répartition des événements, effondrement, rupture de pale, chute de pale, chute d'éléments et incendie, par rapport à la totalité des accidents observés en France. Elles sont représentées par des histogrammes de couleur foncée;
- La répartition des causes premières pour chacun des événements décrits ci-dessus. Celle-ci est donnée par rapport à la totalité des accidents observés en France. Elles sont représentées par des histogrammes de couleur claire.

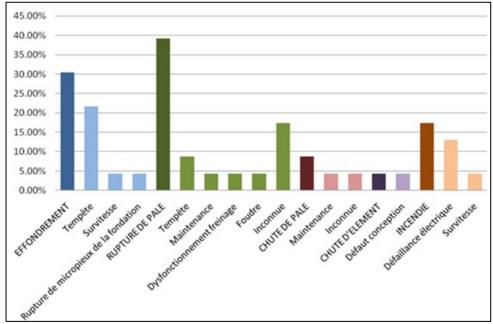


Figure 10 : Répartition des événements accidentels et de leurs causes premières (Source : Guide technique, SER – FEE – INERIS)

Par ordre d'importance, les accidents les plus recensés sont les ruptures de pale, les effondrements, les incendies, les chutes de pale et les chutes des autres éléments de l'éolienne. La principale cause de ces accidents est les tempêtes.

VII.2. Inventaire des accidents et incidents à l'international

La synthèse ci-dessous provient de l'analyse de la base de données réalisée par l'association Caithness Wind Information Forum (CWIF). Sur les 994 accidents décrits dans la base de données au moment de sa consultation par le groupe de travail précédemment mentionné, seuls 236 sont considérés comme des « accidents majeurs ». Les autres concernant plutôt des accidents du travail, des presque-accidents, des incidents, etc. et ne sont donc pas pris en compte dans l'analyse suivante.

Le graphique suivant montre la répartition des événements accidentels par rapport à la totalité des accidents analysés.

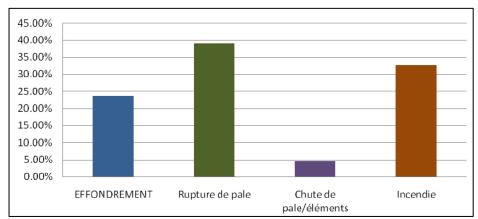


Figure 11 : Répartition des événements accidentels et de leurs causes premières dans le monde entre 2000 et 2011 (Source : CWIF)

Ci-après est présenté le recensement des causes premières pour chacun des événements accidentels recensés (données en répartition par rapport à la totalité des accidents analysés).

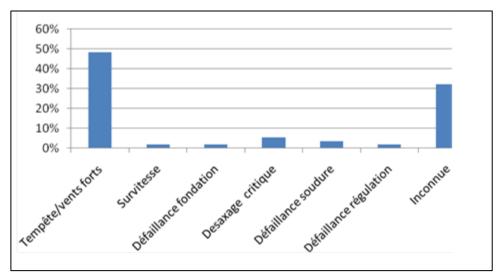


Figure 12 : Répartition des causes premières d'effondrement (Source : CWIF)

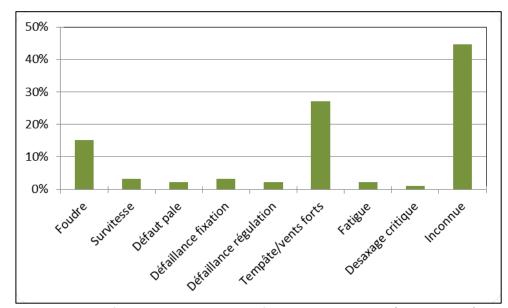


Figure 13 : Répartition des causes premières de rupture de pale (Source : CWIF)

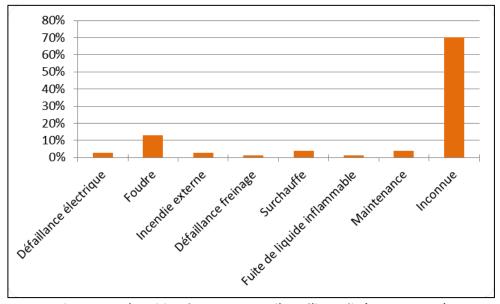


Figure 14 : Répartition des causes premières d'incendie (Source : CWIF)

Tout comme pour le retour d'expérience français, ce retour d'expérience montre l'importance des causes « tempêtes et vents forts » dans les accidents. Il souligne également le rôle de la foudre dans les accidents.

VII.3. Inventaire des accidents majeurs survenus sur les sites de l'exploitant

Aucun accident majeur n'est à déplorer sur les sites exploités par la société wpd windmanager à ce jour.

VII.4. Synthèse des phénomènes dangereux redoutés issus du retour d'expérience

VII.4.1. Analyse de l'évolution des accidents en France

A partir de l'ensemble des phénomènes dangereux qui ont été recensés, il est possible d'étudier leur évolution en fonction du nombre d'éoliennes installées.

La figure ci-dessous montre cette évolution et il apparaît clairement que le nombre d'incidents n'augmente pas proportionnellement au nombre d'éoliennes installées. Depuis 2005, l'énergie éolienne s'est en effet fortement développée en France, mais le nombre d'incidents par an reste relativement constant.

Cette tendance s'explique principalement par un parc éolien français assez récent, qui utilise majoritairement des éoliennes de nouvelle génération, équipées de technologies plus fiables et plus sûres.

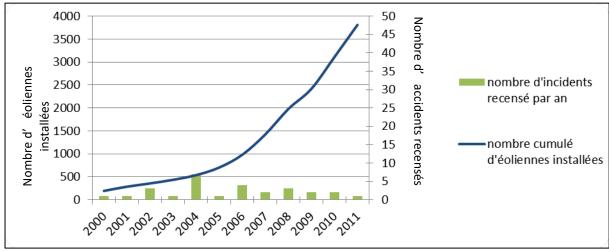


Figure 15 : Evolution du nombre d'incidents annuels en France et nombre d'éoliennes installées

VII.4.2. Analyse des typologies d'accidents les plus fréquents

Le retour d'expérience permet d'identifier les principaux événements redoutés suivants :

- Effondrements;
- Ruptures de pales ;
- Chutes de pales et d'éléments de l'éolienne ;
- Incendie.

Des événements de fuite peuvent également survenir, même si avec le modèle d'éolienne proposé ces fuites restent majoritairement confinées dans le mât de l'éolienne.

VII.5. Limites d'utilisation de l'accidentologie

Ces retours d'expérience doivent être considérés avec précaution. Ils comportent notamment les biais suivants :

- La non-exhaustivité des événements : ce retour d'expérience, constitué à partir de sources variées, ne provient pas d'un système de recensement organisé et systématique. Dès lors, certains événements ne sont pas reportés. En particulier, les événements les moins spectaculaires peuvent être négligés : chutes d'éléments, projections et chutes de glace ;
- La non-homogénéité des aérogénérateurs inclus dans ce retour d'expérience : les aérogénérateurs observés n'ont pas été construits aux mêmes époques et ne mettent pas en œuvre les mêmes technologies. Les informations sont très souvent manquantes pour distinguer les différents types d'aérogénérateurs (en particulier concernant le retour d'expérience mondial) ;
- Les importantes incertitudes sur les causes et sur la séquence qui a mené à un accident : de nombreuses informations sont manguantes ou incertaines sur la séquence exacte des accidents.

L'analyse du retour d'expérience permet ainsi de dégager de grandes tendances, mais à une échelle détaillée, elle comporte de nombreuses incertitudes.

VIII. Analyse préliminaire des risques

L'évaluation préliminaire des risques a pour objet d'identifier les causes et les conséquences potentielles découlant de situations dangereuses provoquées par des dysfonctionnements des installations étudiées.

Elle permet de caractériser le niveau de risque de ces événements redoutés, selon une méthodologie décrite ci-dessous, et d'identifier les accidents majeurs, qui seront étudiés de manière détaillée au chapitre « Analyse Détaillée des Risques ».

VIII.1. Objectif de l'analyse préliminaire des risques

L'analyse des risques a pour objectif principal d'identifier les scenarii d'accidents majeurs et les mesures de sécurité qui empêchent ces scenarii de se produire ou en limitent les effets. Cet objectif est atteint au moyen d'une identification de tous les scenarii d'accident potentiels pour une installation (ainsi que des mesures de sécurité) basé sur un questionnement systématique des causes et conséquences possibles des événements accidentels, ainsi que sur le retour d'expérience disponible.

Les scenarii d'accident sont ensuite hiérarchisés en fonction de leur intensité et de l'étendue possible de leurs conséquences. Cette hiérarchisation permet de « filtrer » les scenarii d'accident qui présentent des conséquences limitées et les scenarii d'accident majeurs – ces derniers pouvant avoir des conséquences sur les personnes.

VIII.2. Recensement des événements initiateurs exclus de l'analyse des risques

Conformément à la circulaire du 10 mai 2010, les événements initiateurs (ou agressions externes) suivants sont exclus de l'analyse des risques :

- Chute de météorite ;
- Séisme d'amplitude supérieure aux séismes maximum de référence éventuellement corrigés de facteurs, tels que définis par la réglementation applicable aux installations classées considérées ;
- Crues d'amplitude supérieure à la crue de référence, selon les règles en vigueur ;
- Evénements climatiques d'intensité supérieure aux événements historiquement connus ou prévisibles pouvant affecter l'installation, selon les règles en vigueur ;
- Chute d'avion hors des zones de proximité d'aéroport ou aérodrome (rayon de 2 km des aéroports et aérodromes) ;
- Rupture de barrage de classe A ou B au sens de l'article R.214-112 du Code de l'environnement ou d'une digue de classe A, B ou C au sens de l'article R.214-113 du même code ;
- Actes de malveillance.

D'autre part, plusieurs autres agressions externes qui ont été détaillées dans l'état initial peuvent être exclues de l'analyse préliminaire des risques car les conséquences propres de ces événements, en termes de gravité et d'intensité, sont largement

supérieures aux conséquences potentielles de l'accident qu'ils pourraient entraîner sur les aérogénérateurs. Le risque de suraccident lié à l'éolienne est considéré comme négligeable dans le cas des événements suivants :

- Inondations;
- Séismes d'amplitude suffisante pour avoir des conséquences notables sur les infrastructures ;
- Incendies de cultures ou de forêts ;
- Pertes de confinement de canalisations de transport de matières dangereuses ;
- Explosions ou incendies générés par un accident sur une activité voisine de l'éolienne.

VIII.3. Recensement des agressions externes potentielles

La première étape de l'analyse des risques consiste à recenser les « agressions externes potentielles ». Ces agressions provenant d'une activité ou de l'environnement extérieur sont des événements susceptibles d'endommager ou de détruire les aérogénérateurs de manière à initier un accident qui peut à son tour impacter des personnes. Par exemple, un séisme peut endommager les fondations d'une éolienne et conduire à son effondrement.

Traditionnellement, deux types d'agressions externes sont identifiés :

- Les agressions externes liées aux activités humaines ;
- Les agressions externes liées à des phénomènes naturels.

VIII.3.1. Agressions externes liées aux activités humaines

Le tableau ci-après synthétise les principales agressions externes liées aux activités humaines dans le cadre du parc éolien des Quatre Vents.

la facata a tamén	Familian	Evènement	Danger	Distance par rapport au mât des éoliennes les plus
Infrastructure	Fonction	redouté	potentiel	proches (en m)
Chemins ruraux et voies communales	Transport	Accident entrainant la sortie de voie d'un ou plusieurs véhicules	Energie cinétique des véhicules et flux thermique	Voie communale n°310 (267 m de E1) CC n°63 (246 m de E1) Voie communale n°351 (420 m de E1, 93m de E2) VC n°386 (169 m de E2) VC n°371 (289m de E2, 424m de E3) CR n°340 (267 m de E5) Chemin voirie rurale de Thorigny (28m de E3) CR des Lilas (313m de E4) VC n°316 (376m de E4)

Tableau 7 : Principales agressions externes liées aux activités humaines

Hormis l'activité agricole, il n'existe pas d'autres activités pouvant être cause d'agression.

On peut donc conclure que compte tenu des distances et des types d'agresseurs potentiels, les agressions externes liées aux activités humaines sont extrêmement peu probables sur les aérogénérateurs du parc éolien des Quatre Vents.

VIII.3.2. Agressions externes liées aux phénomènes naturels

Le tableau ci-après synthétise les principales agressions externes liées aux phénomènes naturels. Dans ce tableau, si cela est applicable et si les données sont disponibles, l'intensité de l'agression à laquelle les aérogénérateurs sont susceptibles d'être soumis est spécifiée.

Comme il a été précisé précédemment, les agressions externes liées à des inondations, à des incendies de forêt ou de cultures ou à des séismes ne sont pas considérées dans ce tableau dans le sens où les dangers qu'elles pourraient entraîner sont largement inférieurs aux dommages causés par le phénomène naturel lui-même.

Le cas spécifique des effets directs de la foudre et du risque de « tension de pas » n'est pas traité dans l'analyse des risques et dans l'étude détaillée des risques dès lors qu'il est vérifié que la norme IEC 61 400-24 (juin 2010) ou la norme EN 62 305-3 (décembre 2006) est respectée. Ces conditions sont reprises dans la fonction de sécurité n°6 ci-après.

En ce qui concerne la foudre, on considère que le respect des normes rend le risque d'effet direct de la foudre négligeable (risque électrique, risque d'incendie, etc.). En effet, le système de mise à la terre permet d'évacuer l'intégralité du courant de foudre. Cependant, les conséquences indirectes de la foudre, comme la possible fragilisation progressive de la pale, sont prises en compte dans les scenarii de rupture de pale.

Tableau 8 : Principales agressions externes liées aux phénomènes naturels

Agression externe	Intensité	Retenu comme agresseur potentiel?
Vents et tempête	Des tempêtes peuvent subvenir mais restent très marginales. L'emplacement n'est pas compris dans une zone affectée par des cyclones tropicaux.	Oui
Foudre	Les éoliennes sont équipées d'un système de protection contre la foudre conçu pour répondre à la classe de protection I de la norme internationale IEC 61 400-24.	Non pour les effets directs de la foudre
Glissement de sols / affaissement miniers	Aucun mouvement de terrain ni cavité souterraine n'ont été recensés dans la zone d'étude.	Non

VIII.4. Scenarii étudiés dans l'analyse préliminaire des risques

Après avoir recensé, dans un premier temps, les potentiels de danger des installations, qu'ils soient constitués par des substances dangereuses ou des équipements dangereux, l'APR doit identifier l'ensemble des séquences accidentelles et phénomènes dangereux associés pouvant déclencher la libération du danger.

Le tableau ci-dessous présente une analyse générique des risques. Celui-ci est construit de la manière suivante :

- Une description des causes et de leur séquençage (événements initiateurs et événements intermédiaires) ;
- Une description des événements redoutés centraux qui marquent la partie incontrôlée de la séquence d'accident ;
- Une description des *fonctions de sécurité* permettant de prévenir l'événement redouté central ou de limiter les effets du phénomène dangereux ;
- Une description des *phénomènes dangereux* dont les effets sur les personnes sont à l'origine d'un accident ;
- Une évaluation qualitative de l'intensité de ces événements.

L'échelle utilisée pour l'évaluation de ce dernier paramètre a été adaptée au cas des éoliennes :

- « 1 » correspond à un phénomène limité ou se cantonnant au surplomb de l'éolienne ;
- « 2 » correspond à une intensité plus importante et impactant potentiellement des personnes autour de l'éolienne. Les différents scenarii listés dans le tableau générique de l'APR sont regroupés et numérotés par thématique, en fonction des typologies d'événement redoutés centraux identifiés grâce au retour d'expérience (« G » pour les scenarii concernant la glace, « I » pour ceux concernant l'incendie, « F » pour ceux concernant les fuites, « C » pour ceux concernant la chute d'éléments de l'éolienne, « P » pour ceux concernant les risques de projection, « E » pour ceux concernant les risques d'effondrement).

Tableau 9 : Analyse aénérique des risques

	Tableau 9 : Analyse générique des risques						
N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualification de la zone d'effet	
G01	Conditions climatiques favorables à la formation de glace	Dépôt de glace sur les pales, le mât et la nacelle	Chute de glace lorsque les éoliennes sont arrêtées	Prévenir l'atteinte des personnes par la chute de glace (N°2)	Impact de glace sur les enjeux	1	
G02	Conditions climatiques favorables à la formation de glace	Dépôt de glace sur les pales	Projection de glace lorsque les éoliennes sont en mouvement	Prévenir la mise en mouvement de l'éolienne lors de la formation de la glace (N°1)	Impact de glace sur les enjeux	2	
101	Humidité/Gel	Court-circuit	Incendie de tout ou partie de l'éolienne	Prévenir les courts- circuits (N°5)	Chute/projection d'éléments enflammés Propagation de l'incendie	2	
102	Dysfonctionnement électrique	Court-circuit	Incendie de tout ou partie de l'éolienne	Prévenir les courts- circuits (N°5)	Chute/projection d'éléments enflammés Propagation de l'incendie	2	
103	Survitesse	Echauffement des parties mécaniques et inflammation	Incendie de tout ou partie de l'éolienne	Prévenir l'échauffement significatif des pièces mécaniques (N°3) Prévenir la survitesse (N°4)	Chute/projection d'éléments enflammés Propagation de l'incendie	2	
104	Désaxage de la génératrice/Pièce défectueuse/Défaut de lubrification	Echauffement des parties mécaniques et inflammation	Incendie de tout ou partie de l'éolienne	Prévenir l'échauffement significatif des pièces mécaniques (N°3)	Chute/projection d'éléments enflammés Propagation de l'incendie	2	
105	Conditions climatiques humides	Surtension	Court-circuit	Prévenir les courts- circuits (N°5) Protection et intervention incendie (N°7)	Incendie poste de livraison (flux thermiques + fumées toxiques SF6) Propagation de l'incendie	2	
106	Rongeur	Surtension	Court-circuit	Prévenir les courts- circuits (N°5) Protection et intervention incendie (N°7)	Incendie poste de livraison (flux thermiques + fumées toxiques SF6) Propagation de l'incendie	2	
107	Défaut d'étanchéité	Perte de confinement	Fuites d'huile isolante	Prévention et rétention des fuites (N°8)	Incendie au poste de transformation Propagation de l'incendie	2	

N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualification de la zone d'effet
F01	Fuite système de lubrification Fuite convertisseur Fuite transformateur	Ecoulement hors de la nacelle et le long du mât, puis sur le sol avec infiltration	Infiltration d'huile dans le sol	Prévention et rétention des fuites (N°8)	Pollution environnement	1
F02	Renversement de fluides lors des opérations de maintenance	Ecoulement	Infiltration d'huile dans le sol	Prévention et rétention des fuites (N°8)	Pollution environnement	1
C01	Défaut de fixation	Chute de trappe	Chute d'élément de l'éolienne	Prévenir les erreurs de maintenance (N°10)	Impact sur cible	1
C02	Défaillance fixation anémomètre	Chute anémomètre	Chute d'élément de l'éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Impact sur cible	1
C03	Défaut fixation nacelle – pivot central – mât	Chute nacelle	Chute d'élément de l'éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Impact sur cible	1
P01	Survitesse	Contraintes trop importante sur les pales	Projection de tout ou partie pale	Prévenir la survitesse (N°4)	Impact sur cible	2
P02	Fatigue Corrosion	Chute de fragment de pale	Projection de tout ou partie pale	Prévenir la dégradation de l'état des équipements (N°11)	Impact sur cible	2
P03	Serrage inapproprié Erreur maintenance – desserrage	Chute de fragment de pale	Projection de tout ou partie pale	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Impact sur cible	2
E01	Effets dominos autres installations	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Projection/chute fragments et chute mât	2
E02	Glissement de sol	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Projection/chute fragments et chute mât	2

N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualification de la zone d'effet
E03	Crash d'aéronef	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Projection/chute fragments et chute mât	2
E04	Effondrement engin de levage travaux	Agression externe et fragilisation structure	Effondrement éolienne	Actions de prévention mises en œuvre dans le cadre du plan de prévention (N°13)	Chute fragments et chute mât	2
E05	Vents forts	Défaillance fondation	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9) Prévenir les risques de dégradation de l'éolienne en cas de vent fort (N°12) Dans les zones cycloniques, mettre en place un système de prévision cyclonique et équiper les éoliennes d'un dispositif d'abattage et d'arrimage au sol (N°13)	Projection/chute fragments et chute mât	2
E06	Fatigue	Défaillance mât	Effondrement éolienne	Prévenir la dégradation de l'état des équipements (N°11)	Projection/chute fragments et chute mât	2
E07	Désaxage critique du rotor	Impact pale – mât	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N°9) Prévenir les erreurs de maintenance (N°10)	Projection/chute fragments et chute mât	2

Ce tableau présentant le résultat d'une analyse des risques peut être considéré comme représentatif des scenarii d'accident pouvant potentiellement se produire sur les éoliennes du parc éolien des Quatre Vents.

VIII.5. Effets dominos

Lors d'un accident majeur sur une éolienne, une possibilité est que les effets de cet accident endommagent d'autres installations. Ces dommages peuvent conduire à un autre accident. Par exemple, la projection de pale impactant les canalisations d'une usine à proximité peut conduire à des fuites de canalisations de substances dangereuses. Ce phénomène est appelé « effet domino ».

Les effets dominos susceptibles d'impacter les éoliennes sont décrits dans le tableau d'analyse des risques générique présenté dans le paragraphe VIII.6.

En ce qui concerne les accidents sur des aérogénérateurs qui conduiraient à des effets dominos sur d'autres installations classées, le paragraphe 1.2.2 de la circulaire du 10 mai 2010 précise : « [...] seuls les effets dominos générés par les fragments sur des installations et équipements <u>proches</u> ont vocation à être pris en compte dans les études de dangers [...]. Pour les effets de projection à une distance plus lointaine, l'état des connaissances scientifiques ne permet pas de disposer de prédictions suffisamment précises et crédibles de la description des phénomènes pour déterminer l'action publique ».

Dans le cadre de la présente étude de dangers, du fait de l'absence de toute installation classée à moins de 200 m des éoliennes, l'évaluation de la probabilité d'impact d'un élément de l'aérogénérateur sur une autre installation ICPE ne sera pas effectuée en détail.

VIII.6. Mise en place des mesures de sécurité

La troisième étape de l'analyse préliminaire des risques consiste à identifier les barrières de sécurité installées sur les aérogénérateurs et qui interviennent dans la prévention et/ou la limitation des phénomènes dangereux listés dans le tableau APR et de leurs conséquences.

Un principe clé du processus d'élaboration d'une étude de dangers est qu'elle doit être proportionnelle au niveau de risques engendrés par les éoliennes sur leur environnement. Dans ce cadre, il est réalisé une description simple des mesures de sécurité mises en œuvre sur les machines. En particulier, les analyses poussées demandées aux installations classées soumises à autorisation avec servitudes (AS) ne seront pas menées ici.

Les tableaux suivants ont pour objectif de synthétiser les fonctions de sécurité identifiées et mise en œuvre sur les éoliennes du parc éolien des Quatre Vents. Dans le cadre de la présente étude de dangers, les fonctions de sécurité sont détaillées selon les critères suivants :

- Fonction de sécurité : il est proposé ci-dessous un tableau par fonction de sécurité. Cet intitulé décrit l'objectif de la ou des mesure(s) de sécurité : il s'agit principalement d'« empêcher, éviter, détecter, contrôler ou limiter » et sera en relation avec un ou plusieurs événements conduisant à un accident majeur identifié dans l'analyse des risques. Plusieurs mesures de sécurité peuvent assurer une même fonction de sécurité.
- **Numéro de la fonction de sécurité** : ce numéro vise à simplifier la lecture de l'étude de danger en permettant des renvois à l'analyse de risque par exemple.
- Mesures de sécurité : cette ligne permet d'identifier les mesures assurant la fonction concernée. Dans le cas de systèmes instrumentés de sécurité, tous les éléments de la chaîne seront être présentés (détection + traitement de l'information + action).
- **Description** : cette ligne permet de préciser la description de la mesure de maîtrise des risques, lorsque des détails supplémentaires sont nécessaires.
- Indépendance (« oui » ou « non ») : cette caractéristique décrit le niveau d'indépendance d'une mesure de maîtrise des risques vis-à-vis des autres systèmes de sécurité et des scenarii d'accident. Cette condition peut être considérée comme remplie (« oui ») ou non (« non »).
- Temps de réponse (en secondes ou en minutes) : cette caractéristique mesure le temps requis entre la sollicitation et l'exécution de la fonction de sécurité. Il s'agit ici de vérifier que la mesure de maîtrise des risques agira « à temps » pour prévenir ou pour limiter les accidents majeurs. Dans le cadre d'une étude de dangers éolienne, l'estimation de ce temps de réponse peut être simplifiée et se contenter d'une estimation d'un temps de réponse maximum qui doit être atteint. Néanmoins, et pour rappel, la réglementation impose les temps de réponse suivants :

- Une mesure remplissant la fonction de sécurité « limiter les conséquences d'un incendie » doit permettre de détecter un incendie et de transmettre l'alerte aux services d'urgence compétents dans un délai de 15 minutes :
- Une seconde mesure remplissant la fonction de sécurité « limiter les conséquences d'un incendie » doit permettre de détecter un incendie et de mettre en œuvre une procédure d'arrêt d'urgence dans un délai de 60 minutes.
- Efficacité (100 % ou 0 %) : l'efficacité mesure la capacité d'une mesure de maîtrise des risques à remplir la fonction de sécurité qui lui est confiée pendant une durée donnée et dans son contexte d'utilisation.
- Test (fréquence): dans ce champ sont rappelés les tests/essais qui seront réalisés sur les mesures de maîtrise des risques. Conformément à la réglementation, un essai d'arrêt, d'arrêt d'urgence et d'arrêt à partir d'une situation de survitesse seront réalisés avant la mise en service de l'aérogénérateur. Dans tous les cas, les tests effectués sur les mesures de maîtrise des risques seront tenus à la disposition de l'inspection des installations classées pendant l'exploitation de l'installation.
- Maintenance (fréquence): ce critère porte sur la périodicité des contrôles qui permettront de vérifier la performance de la mesure de maîtrise des risques dans le temps. Pour rappel, la réglementation demande qu'a minima: un contrôle tous les ans soit réalisé sur la performance des mesures de sécurité permettant de mettre à l'arrêt, à l'arrêt d'urgence et à l'arrêt à partir d'une situation de survitesse et sur tous les systèmes instrumentés de sécurité.

Note 1 : Pour certaines mesures de maîtrise des risques, certains de ces critères peuvent ne pas être applicables. Le critère correspondant sera alors renseigné avec l'acronyme « NA » (Non Applicable).

Note 2 : Certaines mesures de maîtrise des risques ne remplissent pas les critères « efficacité » ou « indépendance » : elles ont une fiabilité plus faible que d'autres mesures de maîtrise des risques. Celles-ci peuvent néanmoins être décrites dans le tableau ci-dessous dans la mesure où elles concourent à une meilleure sécurité sur le site d'exploitation.

Conformément à l'article 19 de l'arrêté du 26 août 2011 modifié, « l'exploitant dispose d'un manuel d'entretien de l'installation dans lequel sont précisées la nature et les fréquences des opérations d'entretien afin d'assurer le bon fonctionnement de l'installation. L'exploitant tient à jour pour chaque installation un registre dans lequel sont consignées les opérations de maintenance ou d'entretien et leur nature, les défaillances constatées et les opérations correctives engagées. »

Tous les éléments relatifs aux tests et aux opérations de maintenance seront transmis à l'inspecteur des ICPE pendant toute la durée d'exploitation.

Fonction de sécurité	Prévenir la mise en mouvement de l'éolienne lors de la formation de glace	N° de la fonction de sécurité	1-a			
Mesures de sécurité	Système de déduction de la formation de glace.					
Description	Ce système déduit la formation de glace sur les pales à partir des données de température et de rendement de l'éolienne (l'accumulation de glace alourdit les pales et diminue le rendement de la turbine). Une configuration du système SCADA permet d'alerter les opérateurs par un message type « Ice Climate ». Une mise à l'arrêt est ensuite effectuée de manière automatique ou manuelle, selon le type de contrat. Les procédures de redémarrage sont définies par l'exploitant.					
Indépendance	Oui					
Temps de réponse	Mise à l'arrêt de la turbine < 1 min					
Efficacité	100 %					
Tests	NA					
Maintenance	Surveillance via la maintenance prédictive					

Fonction de sécurité	Prévenir l'atteinte des personnes par la chute de glace	N° de la fonction de sécurité	2		
Mesures de sécurité	Signalisation du risque en pied de machine.				
	Eloignement des zones habitées et fréquentées.				
Description	Mise en place de panneaux de signalisation en pied de machines du risque de chute de				
	glace (conformément à l'article 14 de l'arrêté du 26 août 2011).				
Indépendance	Oui				
Temps de réponse	NA				
Efficacité	100 %. Nous considérerons que compte tenu de l'implantat l'entretien prévu, l'information des promeneurs sera systématiq	•	aux et de		
Tests	NA				
Maintenance	Vérification de l'état général du panneau, de l'absence de dété végétation afin que le panneau reste visible.	erioration, entre	etien de la		

Fonction de sécurité	Prévenir l'échauffement significatif des pièces mécaniques	N° de la fonction de sécurité	3			
Mesures de sécurité	Sondes de température sur pièces mécaniques.					
	Suivant les niveaux d'alarme et les capteurs, la machine peut être bridée ou mise à l'arrêt					
	jusqu'à refroidissement.					
	Le redémarrage peut être effectué à distance, si les seuils de tem des seuils d'alarme.	pérature sont a	u-dessous			
Description	Des sondes de température sont mises en place sur les équi	pements ayant	de fortes			
	variations de température au cours de leur fonctionnement (p	aliers et roule	ments des			
	machines tournantes, enroulements du générateur et du transfo	rmateur). Ces s	ondes ont			
	des seuils hauts qui, une fois dépassés, conduisent à une alarme	et à une mise à	ı l'arrêt du			
	rotor.					
Indépendance	Oui					
Temps de réponse	Temps de détection de l'ordre de la seconde					
	Mise en pause de la turbine < 1 min					
Efficacité	100 %					
Tests	Surveillance via la maintenance prédictive, avec détection de la déviation de températures de chaque capteur.					
Maintenance	Surveillance via la maintenance prédictive, avec détection de la	déviation de tei	mpérature			
	de chaque capteur (comparaison avec les données des autres éoliennes du parc).					
	Remplacement de la sonde de température en cas de dysfonctionnement de l'équipement.					
	Vérification du système au bout de 3 mois de fonctionneme conformément à l'article 18 de l'arrêté du 26 août 2011 modifié.	•	òle annuel			

Fonction de sécurité	Prévenir la survitesse	N° de la fonction de sécurité	4-a		
Mesures de sécurité	Détection de vent fort et freinage aérodynamique par le système de contrôle.				
Description	L'éolienne est mise à l'arrêt si la vitesse de vent mesurée dépasse la vitesse maximale d'environ 90 km/h. Cet arrêt est réalisé par le frein aérodynamique de l'éolienne avec mise en drapeau des pales (le freinage est effectué en tournant ensemble les 3 pales à un angle de 85 à 90°, afin de positionner celles-ci en position où elles offrent peu de prise au vent). Cette mise en drapeau est effectuée par le système d'orientation des pales.				
Indépendance	Oui				
Temps de réponse	Temps de détection de l'ordre de la seconde. Mise en pause de la turbine < 1 min.				

	L'exploitant ou l'opérateur désigné sera en mesure de transmettre l'alerte aux services d'urgence compétents dans un délai de 15 minutes suivant l'entrée en fonctionnement		
	anormal de l'aérogénérateur conformément aux dispositions de l'arrêté du 26 août 2011.		
Efficacité	100 %		
Tests	Test d'arrêt simple, d'arrêt d'urgence et de la procédure d'arrêt en cas de survitesse avant la mise en service des aérogénérateurs conformément à l'article 15 de l'arrêté du 26 août 2011. Tests à chaque maintenance préventive.		
Maintenance	Vérification du système au bout de 3 mois de fonctionnement puis contrôle annuel conformément à l'article 18 de l'arrêté du 26 août 2011 (notamment de l'usure du frein et de pression du circuit de freinage d'urgence.). Maintenance de remplacement en cas de dysfonctionnement de l'équipement.		
Fonction de sécurité	Prévenir la survitesse	N° de la fonction de sécurité	4-b
Mesures de sécurité	Détection de survitesse du générateur.		
Description	Les vitesses de rotation du générateur et de l'arbre lent sont r permanence par le système de contrôle. Cette mesure redonda défaillances liées à un seul capteur. En cas de discordance des me à l'arrêt. Si la vitesse de rotation est supérieure à la vitesse considérée comme étant en survitesse et est donc mise à l'arrêt.	nte permet de sures, l'éolienn d'alarme, l'éo	limiter les le est mise
Indépendance	Oui		
Temps de réponse	Temps de détection de l'ordre de la seconde. Mise en pause de la turbine < 1 min. L'exploitant ou l'opérateur désigné sera en mesure de transmettre l'alerte aux services d'urgence compétents dans un délai de 15 minutes suivant l'entrée en fonctionnement anormal de l'aérogénérateur conformément aux dispositions de l'arrêté du 26 août 2011 modifié.		
Efficacité	100 %		
Tests Maintenance	Test d'arrêt simple, d'arrêt d'urgence et de la procédure d'arrêt en cas de survitesse avant la mise en service des aérogénérateurs conformément à l'article 15 de l'arrêté du 26 août 2011 modifié. Tests à chaque maintenance préventive (tous les ans). Maintenance de remplacement en cas de dysfonctionnement de l'équipement.		
Widinteriance	N° de la		
Fonction de sécurité	Prévenir la survitesse	fonction de sécurité	4-c
Mesures de sécurité	Contrôle de la vitesse de rotation.		
Description	Le système de contrôle de l'éolienne règle la vitesse du rotor en de sorte que la vitesse nominale ne soit pas trop fortement dépa		
Indépendance	Oui		
Temps de réponse	Temps de détection < 1 min. Le couplage du système de détection de survitesse au système SCADA permet l'envoi en temps réel d'alertes par SMS et par courriel, selon les instructions de l'exploitant. L'exploitant sera ainsi en mesure de transmettre l'alerte aux services d'Urgence compétents dans un délai de 15 minutes suivant l'entrée en fonctionnement anormal de l'aérogénérateur conformément à l'article 23 de l'arrêté du 26 août 2011 modifié.		
Efficacité	100 %		
Tests	Lors de la mise en service de l'aérogénérateur, une série de tests et de survitesse) est réalisée afin de s'assurer du fonctionnem l'éolienne conformément à l'article 15 de l'arrêté du 26 août 201	nent et de la s	_
Maintenance	Vérification du système au bout de 3 mois de fonctionnement puis tous les 6 mois suivant les manuels de maintenance. Maintenance conforme aux dispositions des articles 15 et 18 de l'arrêté du 26 août 2011 modifié.		

Fonction de sécurité	Prévenir les courts-circuits	N° de la fonction de sécurité	5
Mesures de sécurité	Détecteur d'arc avec coupure électrique (salle transfo et armoire		
Description	Outre les protections traditionnelles contre les surintensités armoires électriques disposées dans les nacelles (qui abritent nu de barres), sont équipées de détecteurs d'arc. Ce système de ce pour objectif de détecter toute formation d'un arc électrique (cu d'amorçage) qui pourrait conduire à des phénomènes de fusion début d'incendie. Le fonctionnement de ce détecteur commande le déclencheme en pied de mât, conduisant ainsi à la mise hors tension de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe inspection visuelle des éléments HT de la nacelle, puis du réarmont de la machine ne pe l	otamment les dapteurs photos aractéristique d on de conducto nt de la cellule chine.	divers jeux sensibles a l'un début eurs et de HT située s qu'après
	et de l'acquittement manuel du défaut.	ement du detet	leur u arc
Indépendance	Oui		
Temps de réponse			
Efficacité	100 %		
Tests	Test des détecteurs d'arc à la mise en service puis tous les 6 mois	S.	
Maintenance	Les installations électriques font l'objet d'un contrôle avant la m du parc éolien, puis annuellement conformément à l'article 10 de modifié. Ce contrôle donne lieu à un rapport, dit rapport de vérifi un organisme agréé. Des vérifications de tous les équipements électriques ainsi que et de serrage des câbles sont intégrés dans le manuel de mainter	e l'arrêté du 26 cation annuel, des mesures d	août 2011 réalisé par 'isolement

Fonction de sécurité	Prévenir les effets de la foudre	N° de la fonction de sécurité	6
Mesures de sécurité	Système de protection contre la foudre conçu pour répondre à la la norme internationale IEC 61400.	a classe de prot	ection I de
Description	/		
Indépendance	Oui		
Temps de réponse	e Immédiat, dispositif passif		
Efficacité	<u>100 %</u>		
Tests	Avant la première mise en route de l'éolienne, une mesure de mise à la terre est effectuée.		
Maintenance	Maintenance Contrôle visuel des pales et des éléments susceptibles d'être impactés par la foudre inclus dans les opérations de maintenance, conformément à l'article 9 de l'arrêté du 26 août 2011 modifié.		

Fonction de sécurité	Protection et intervention incendie	N° de la fonction de sécurité	7
Mesures de sécurité	 Sondes de température sur pièces mécaniques. 		
	Suivant les niveaux d'alarme et les capteurs, la machine peut êti	e bridée ou mis	se à l'arrêt
	jusqu'à refroidissement.		
	Le redémarrage peut être effectué à distance, si les seuils de tem	pérature sont a	ıu-dessous
	des seuils d'alarme.		
	2. Système de détection incendie.		

Description	 Des sondes de température sont mises en place sur les équipements ayant de fortes variations de température au cours de leur fonctionnement (paliers et roulements des machines tournantes, enroulements du générateur et du transformateur). Ces sondes ont des seuils hauts qui, une fois dépassés, conduisent à une alarme et à une mise à l'arrêt du rotor. Les éoliennes sont équipées par défaut d'un système autonome de détection composé de plusieurs capteurs de fumée et de chaleur disposés aux possibles points d'échauffements tels que : La chambre du transformateur Le générateur Le convertisseur Les armoires électriques principales Le système de freinage. En cas de détection, une sirène est déclenchée, l'éolienne est mise à l'arrêt en « emergency stop » et isolement électrique par ouverture de la cellule en pied de mât. De façon concomitante un message d'alarme est envoyé au centre de télésurveillance via le système de contrôle commande. Le système de détection incendie est alimenté par le réseau secouru (UPS). Vis-à-vis de la protection incendie, deux extincteurs sont présents dans la nacelle et un extincteur est disponible en pied de tour (utilisables par le personnel sur un départ de feu). 	
Indépendance	Oui	
Temps de réponse		
remps de reponse	Temps de détection de l'ordre de la seconde. Le couplage des éléments de détection de fumée au système SCADA permet l'envoi en temps réel d'alertes par SMS et par courriel, selon les instructions de l'exploitant. L'exploitant sera ainsi en mesure de transmettre l'alerte aux services d'Urgence compétents dans un délai de 15 minutes suivant l'entrée en fonctionnement anormal de l'aérogénérateur conformément à l'article 23 de l'arrêté du 26 août 2011 modifié.	
Efficacité	100 %	
Tests	Test des détecteurs de fumée à la mise en service puis tous les ans.	
Maintenance	Contrôle tous les 6 mois du système de détection incendie pour être conforme à l'article 18 de l'arrêté du 26 août 2011 modifié. Le matériel incendie (extincteurs) est contrôlé périodiquement par un organisme spécialisé. Maintenance prédictive sur les capteurs de température.	

Fonction de sécurité	Prévention et rétention des fuites	N° de la fonction de sécurité	8
Mesures de sécurité	1. Détecteurs de niveau d'huile et capteurs de pression,		
	2. Capteur de niveau du circuit de refroidissement (niveau bas	alarmé avec arr	êt après
	temporisation),		
	3. Procédure d'urgence,		
	4. Kit antipollution,		
	5. Nacelle et dernière plateforme de la tour formant rétention.		
Description	1. Le circuit hydraulique est équipé de capteurs de pression (u	ine mesure de	pression
	dans le bloc hydraulique de chaque pale) permettant de	s'assurer de	son bon
	fonctionnement. Toute baisse de pression au-dessous d'u	ın seuil préala	blement
	déterminé, conduit au déclenchement de l'arrêt du rotor (mis	e en drapeau de	es pales).
	Afin de pouvoir assurer la manœuvre des pales en cas de perte du groupe de mise en		
	pression ou en cas de fuite sur le circuit, chaque bloc hydraulique (situé au plus près		
	du vérin de pale) est équipé d'un accumulateur hydropneumatique (pressurisé		surisé à
	l'azote) qui permet la mise en drapeau de la pale.		

	Le système hydraulique, et notamment le maintien en pression des accumulateurs, est testé avant chaque démarrage de l'éolienne. La pression du circuit de lubrification du multiplicateur fait également l'objet d'un contrôle, asservissant le fonctionnement de l'éolienne. Les niveaux d'huile sont surveillés d'une part au niveau du multiplicateur et d'autre part au niveau du groupe hydraulique. L'atteinte du niveau bas sur le multiplicateur ou sur le groupe hydraulique, déclenche une alarme et conduit à la mise à l'arrêt du rotor. 2. Le circuit de refroidissement (eau glycolée) est équipé d'un capteur de niveau bas, qui en cas de déclenchement conduit à l'arrêt de l'éolienne. 3. Les opérations de vidange font l'objet de procédures spécifiques. Le transfert des huiles s'effectue de manière sécurisée via un système de tuyauterie et de pompes directement entre l'élément à vidanger et le camion de vidange. Une procédure en cas de pollution accidentelle du sol est communiquée au personnel intervenant dans les aérogénérateurs. 4. En cas de fuite, les véhicules de maintenance sont équipés de kits de dépollution composés de grandes feuilles absorbantes. Ces kits d'intervention d'urgence permettent: • de contenir et arrêter la propagation de la pollution; • d'absorber jusqu'à 20 litres de déversements accidentels de liquides (huile, eau, alcools) et produits chimiques (acides, bases, solvants); • de récupérer les déchets absorbés. Si ces kits de dépollution s'avèrent insuffisant, le constructeur se charge de faire intervenir une société spécialisée qui récupérera et traitera la terre souillée via les filières adéquates.	
	5. La nacelle et la dernière plateforme de la tour font office de bacs de rétention en cas de fuite d'huile.	
Indépendance	Oui	
Temps de réponse	Temps de détection de l'ordre de la seconde.	
	Mise en pause de la turbine < 1 min.	
Efficacité	100 %	
Tests	Tests des systèmes hydrauliques à la mise en service, au bout de 3 mois de	
	fonctionnement puis tous les ans suivant les manuels de maintenance.	
	Dépendant du débit de fuite.	
Maintenance	Les vérifications d'absence de fuites sont effectuées à chaque service planifié. Surveillance des niveaux d'huile via des outils d'analyses instantanées ou hebdomadaires. Inspection et maintenance curative en fonction du type de déclenchement d'alarme.	

Fonction de sécurité	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation)	N° de la fonction de sécurité	9
Mesures de sécurité	Contrôles réguliers des fondations et des différentes pièces d'as	semblage (ex :	brides,
	joints, etc.).		
	Procédures et contrôle qualité.		

F	
Description	La norme IEC 61 400-1 « Exigence pour la conception des aérogénérateurs » fixe les
	prescriptions propres à fournir « un niveau approprié de protection contre les
	dommages résultant de tout risque durant la durée de vie » de l'éolienne.
	Le constructeur remet à chacun de ses clients, un document « Type certificate » qui
	atteste de la conformité de l'éolienne fournie au standard IEC 61400-1 (édition 2005).
	Ainsi la nacelle, le moyeu, les fondations et la tour répondent aux standards IEC 61 400-
	1. Les pales respectent le standard IEC 61 400 -1 ; 12 ; 23.
	De plus, des organismes compétents externes, mandatés par l'exploitant du parc,
	produisent des rapports attestant de la conformité de nos turbines à la fin de la phase
	d'installation.
	L'article R111-38 du code de la construction et de l'habitation fait référence au contrôle
	technique de construction. Il est obligatoire, à la charge de l'exploitant et réalisé par des
	organismes agréés par l'État. Ce contrôle assure la solidité des ouvrages ainsi que la
	sécurité des biens et des personnes.
	Les éoliennes sont protégées contre la corrosion due à l'humidité de l'air, selon la norme
	ISO 9223.
Indépendance	Oui
Temps de réponse	NA
Efficacité	100 %
Tests	NA
Maintenance	Le plan de maintenance prévoit le contrôle des brides de fixation, des brides de mât,
	des fixations des pales et le contrôle visuel du mât trois mois puis un an après la mise
	en service industrielle puis tous les trois ans, conformément à l'article 18 de l'arrêté du
	26 août 2011 modifié.

Fonction de sécurité	Prévenir les erreurs de maintenance	N° de la fonction de sécurité	10
Mesures de sécurité	Procédure de maintenance.		
Description	Préconisation du manuel de maintenance.		
	Formation du personnel.		
Indépendance	Oui		
Temps de réponse	NA		
Efficacité	100 %		
Tests	Traçabilité : rapport de service		
Maintenance	NA		

Fonction de sécurité	Prévenir la dégradation de l'état des équipements	N° de la fonction de sécurité	11
Mesures de sécurité	1. Procédure de contrôle des équipements lors des maintenances	planifiées.	
	2. Suivi de données mesurées par les capteurs et sondes présente	es dans les éolie	ennes.
Description	1. Ce point est détaillé dans le chapitre dédié aux maintenances p 2. L'intégralité des données mesurées par les capteurs et soné éoliennes est suivie et enregistrée dans une base de données un traitées par des algorithmes en permanence afin de détecter, au p des équipements. Lorsqu'elle est nécessaire, une inspection de l'é de se dégrader est planifiée. Les algorithmes de détection et d sont en amélioration continue.	des présentes ique. Ces donn lus tôt, les dégra équipement sou	ées sont adations upçonné
Indépendance	Oui	•	

Temps de réponse	Entre 12 heures et 6 mois selon le type de dégradation.
Efficacité	NA
Tests	Traçabilité : rapport de service
Maintenance	NA

Fonction de sécurité	Prévenir les risques de dégradation de l'éolienne en cas de vent fort	N° de la fonction de sécurité	12
Mesures de sécurité	1. Classe d'éolienne adaptée au site et au régime de vents		
	 Mise à l'arrêt sur détection de vent fort et freinage aérodynar contrôle 	nique par le sys	tème de
Description	 En France, la classification de vents des éoliennes fait référence à la norme « IEC 61400-1 ». Les éoliennes sont dimensionnées pour chacune de ces classes. Il est donc important de faire correspondre la classe du site avec la classe de la turbine Les éoliennes sont mises à l'arrêt si la vitesse de vent mesurée dépasse la vitesse maximale de fonctionnement. Cet arrêt est réalisé par le frein aérodynamique de l'éolienne avec mise en drapeau des pales. Cette mise en drapeau est effectuée par le système d'orientation des pales. 		
Indépendance	Oui		
Temps de réponse	Temps de détection de l'ordre de la seconde.		
	Mise drapeau des pales < 1 min.		
Efficacité	100 %		
Tests	Pitch system testé tous les ans lors des maintenances préventives.		
Maintenance	Tous les ans.		

L'ensemble des procédures de maintenance et des contrôles d'efficacité des systèmes sera conforme à l'arrêté du 26 août 2011 modifié.

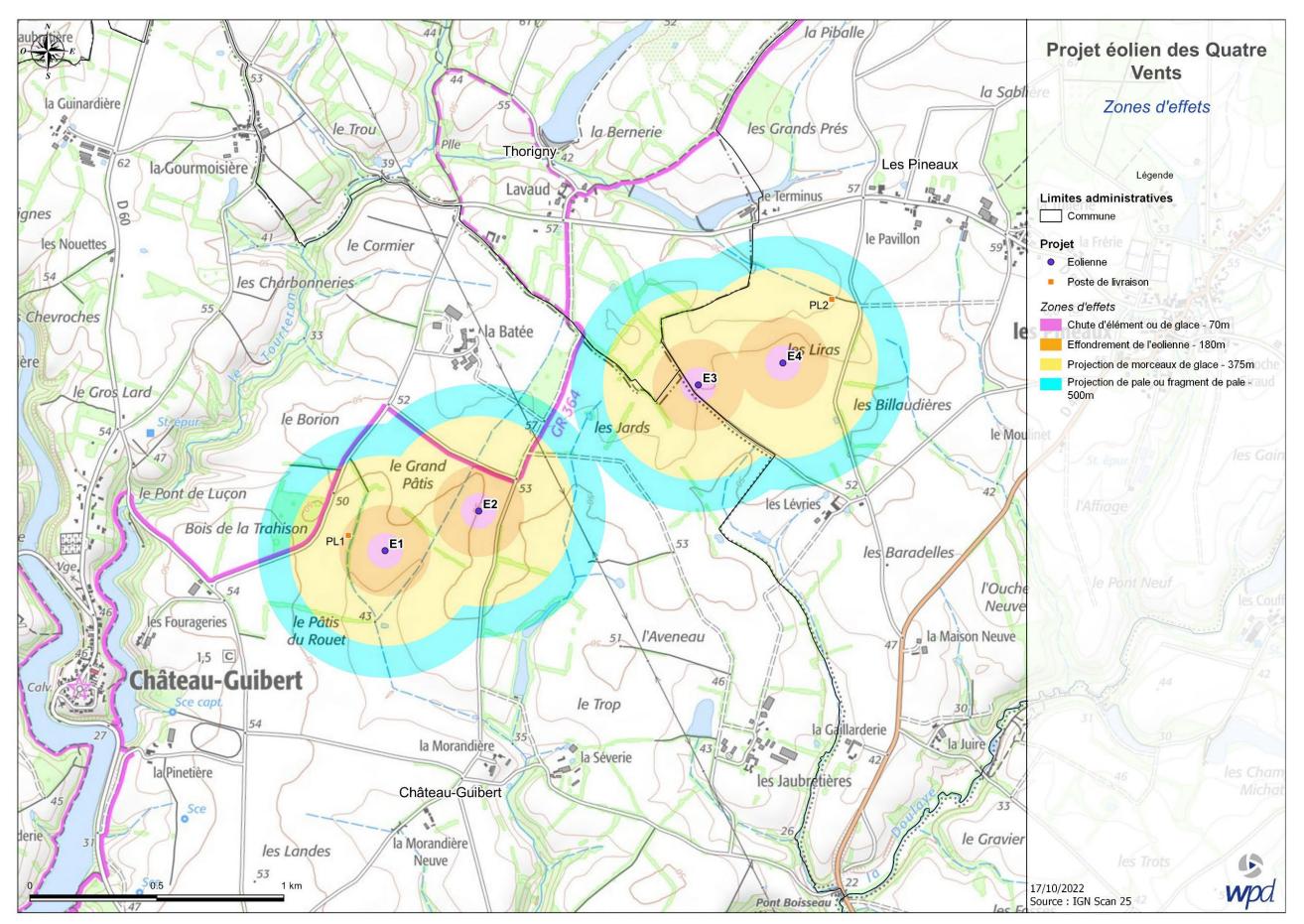
Notamment, suivant une périodicité qui ne peut excéder un an, l'exploitant réalise une vérification de l'état fonctionnel des équipements de mise à l'arrêt, de mise à l'arrêt d'urgence et de mise à l'arrêt depuis un régime de survitesse en application des préconisations du constructeur de l'aérogénérateur.

VIII.7. Conclusion de l'analyse préliminaire des risques

A l'issue de l'analyse préliminaire des risques, l'étude de dangers doit préciser quels scenarii sont retenus en vue de l'analyse détaillée des risques. Ne sont retenus que les séquences accidentelles dont l'intensité est telle que l'accident peut avoir des effets significatifs sur la vie humaine.

Dans le cadre de l'analyse préliminaire des risques génériques des parcs éoliens, trois catégories de scenarii sont *a priori* exclues de l'étude détaillée, en raison de leur faible intensité :

Tableau 11 : Catégories exclues de l'APR


Nom du scénario exclu	Justification		
Incendie de l'éolienne (effets thermiques)	En cas d'incendie de nacelle, et en raison de la hauteur des nacelles, les effets thermiques ressentis au sol seront mineurs. Par exemple, dans le cas d'un incendie de nacelle située à 50 mètres de hauteur, la valeur seuil de 3 kW/m² n'est pas atteinte. Dans le cas d'un incendie au niveau du mât les effets sont également mineurs et l'arrêté du 26 août 2011 modifié encadre déjà largement la sécurité des installations. Ces effets ne sont donc pas étudiés dans l'étude détaillée des risques.		
	Néanmoins il peut être redouté que des chutes d'éléments (ou des projections) interviennent lors d'un incendie. Ces effets sont étudiés avec les projections et les chutes d'éléments.		
Incendie du poste de livraison ou du transformateur	En cas d'incendie de ces éléments, les effets ressentis à l'extérieur des bâtiments (poste de livraison) seront mineurs ou inexistants du fait notamment de la structure en béton. De plus, la réglementation encadre déjà largement la sécurité de ces installations (l'arrêté du 26 août 2011 modifié impose le respect des normes NFC 15-100, NFC 13-100 et NFC 13-200).		
	En cas d'infiltration d'huiles dans le sol, les volumes de substances libérées dans le sol restent mineurs.		
Infiltration d'huile dans le sol	Ce scénario peut ne pas être détaillé dans le chapitre de l'étude détaillée des risques sauf en cas d'implantation dans un périmètre de protection rapprochée d'un captage d'eau potable.		

Les cinq catégories de scenarii étudiées dans l'étude détaillée des risques sont les suivantes :

- Projection de tout ou une partie de pale ;
- Effondrement de l'éolienne ;
- Chute d'éléments de l'éolienne ;
- Chute de glace ;
- Projection de glace.

Ces scenarii regroupent plusieurs causes et séquences d'accident. En estimant la probabilité, gravité, cinétique et intensité de ces événements, il est possible de caractériser les risques pour toutes les séquences d'accidents. Les zones d'effets de chacun de ces scenarii sont présentées sur la carte page suivante.

Carte 10 : Zones d'effet du projet éolien des Quatre Vents

IX. Etude détaillée des risques

L'étude détaillée des risques vise à caractériser les scenarii sélectionnés à l'issue de l'analyse préliminaire des risques en termes de probabilité, cinétique, intensité et gravité. Son objectif est donc de préciser le risque généré par l'installation et d'évaluer les mesures de maîtrise des risques mises en œuvre. L'étude détaillée permet de vérifier l'acceptabilité des risques potentiels générés par l'installation.

IX.1. Rappel des définitions

Les règles méthodologiques applicables pour la détermination de l'intensité, de la gravité et de la probabilité des phénomènes dangereux sont précisées dans l'arrêté ministériel du 29 septembre 2004. Cet arrêté ne prévoit de détermination de l'intensité et de la gravité que pour les effets de surpression, de rayonnement thermique et de toxique.

Cet arrêté est complété par la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003.

Cette circulaire précise en son point 1.2.2 qu'à l'exception de certains explosifs pour lesquels les effets de projection présentent un comportement caractéristique à faible distance, les projections et chutes liées à des ruptures ou fragmentations ne sont pas modélisées en intensité et gravité dans les études de dangers.

Force est néanmoins de constater que ce sont les seuls phénomènes dangereux susceptibles de se produire sur des éoliennes.

Afin de pouvoir présenter des éléments au sein de cette étude de dangers, il est proposé de recourir à la méthode *ad hoc* préconisée par le guide technique national relatif à l'étude de dangers dans le cadre d'un parc éolien dans sa version de mai 2012. Cette méthode est inspirée des méthodes utilisées pour les autres phénomènes dangereux des installations classées, dans l'esprit de la loi du 30 juillet 2003.

Cette première partie de l'étude détaillée des risques consiste donc à rappeler les définitions de chacun de ces paramètres, en lien avec les références réglementaires correspondantes.

IX.1.1. Cinétique

La cinétique d'un accident est la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables.

Selon l'article 8 de l'arrêté du 29 septembre 2005, la cinétique peut être qualifiée de « lente » ou de « rapide ». Dans le cas d'une cinétique lente, les personnes ont le temps d'être mises à l'abri à la suite de l'intervention des services de secours. Dans le cas contraire, la cinétique est considérée comme rapide.

Dans le cadre d'une étude de dangers pour des aérogénérateurs, il est supposé, de manière prudente, que tous les accidents considérés ont une <u>cinétique rapide</u>. Ce paramètre ne sera donc pas détaillé à nouveau dans chacun des phénomènes redoutés étudiés par la suite.

IX.1.2. Intensité

L'intensité des effets des phénomènes dangereux est définie par rapport à des valeurs de référence exprimées sous forme de seuils d'effets toxiques, d'effets de surpression, d'effets thermiques et d'effets liés à l'impact d'un projectile, pour les hommes et les structures (article 9 de l'arrêté du 29 septembre 2005).

On constate que les scenarii retenus au terme de l'analyse préliminaire des risques pour les parcs éoliens sont des scenarii de projection (de glace ou de toute ou partie de pale), de chute d'éléments (glace ou toute ou partie de pale) ou d'effondrement de machine.

Or, les seuils d'effets proposés dans l'arrêté du 29 septembre 2005 caractérisent des phénomènes dangereux dont l'intensité s'exerce dans toutes les directions autour de l'origine du phénomène, pour des effets de surpression, toxiques ou thermiques). Ces seuils ne sont donc pas adaptés aux accidents générés par les aérogénérateurs.

Dans le cas de scenarii de projection, l'annexe II de cet arrêté précise : « Compte tenu des connaissances limitées en matière de détermination et de modélisation des effets de projection, l'évaluation des effets de projection d'un phénomène dangereux

nécessite, le cas échéant, une analyse, au cas par cas, justifiée par l'exploitant. Pour la délimitation des zones d'effets sur l'homme ou sur les structures des installations classées, il n'existe pas à l'heure actuelle de valeur de référence. Lorsqu'elle s'avère nécessaire, cette délimitation s'appuie sur une analyse au cas par cas proposée par l'exploitant ».

C'est pourquoi, pour chacun des événements accidentels retenus (chute d'éléments, chute de glace, effondrement et projection), deux valeurs de référence ont été retenues :

- 5 % d'exposition : seuil d'exposition très forte ;
- 1 % d'exposition : seuil d'exposition forte.

Le degré d'exposition est défini comme le rapport entre la surface atteinte par un élément chutant ou projeté et la surface de la zone exposée à la chute ou à la projection.

Intensité	Degré d'exposition	
Exposition très forte	Supérieur à 5 %	
Exposition forte	Compris entre 1 % et 5 %	
Exposition modérée	Inférieur à 1 %	

Les zones d'effets sont définies pour chaque événement accidentel comme la surface exposée à cet événement.

IX.1.3. Gravité

Par analogie aux niveaux de gravité retenus dans l'annexe III de l'arrêté du 29 septembre 2005, les seuils de gravité sont déterminés en fonction du nombre équivalent de personnes permanentes dans chacune des zones d'effet définies dans le paragraphe précédent.

Tableau 12 : Détermination du seuil de gravité (Source : Guide technique, SER – FEE – INERIS)

Intensité Gravité	Zone d'effet d'un événement accidentel engendrant une exposition très forte	Zone d'effet d'un événement accidentel engendrant une exposition forte	Zone d'effet d'un événement accidentel engendrant une exposition modérée
« Désastreux »	Plus de 10 personnes exposées	Plus de 100 personnes exposées	Plus de 1000 personnes exposées
« Catastrophique »	« Catastrophique » Moins de 10 personnes exposées		Entre 100 et 1000 personnes exposées
« Important » Au plus 1 personne exposée		Entre 1 et 10 personnes exposées	Entre 10 et 100 personnes exposées
« Sérieux » Aucune personne exposée		Au plus 1 personne exposée	Moins de 10 personnes exposées
« Modéré »	Pas de zone de létalité en dehors de l'établissement	Pas de zone de létalité en dehors de l'établissement	Présence humaine exposée inférieure à « une personne »

La détermination du nombre de personnes permanentes (ou équivalent personnes permanentes) présentes dans chacune des zones d'effet est effectuée à l'aide de la méthode présentée en annexe 1 du Guide technique relatif à l'élaboration de l'étude de danger pour les parcs éoliens (SER – FEE – INERIS). Cette méthode se base sur la fiche n°1 de la circulaire du 10 mai 2010 relative aux règles méthodologiques applicables aux études de dangers. Cette fiche permet de compter aussi simplement que possible, selon des règles forfaitaires, le nombre de personnes exposées.

IX.1.4. Probabilité

L'annexe I de l'arrêté du 29 septembre 2005 définit les classes de probabilité qui doivent être utilisée dans les études de dangers pour caractériser les scenarii d'accident majeur :

Tableau 13 : Définition des classes de probabilité (Source : Guide technique, SER – FEE – INERIS)

Niveau	Echelle qualitative	Echelle quantitative (probabilité annuelle)
	Courant	_
A	Se produit sur le site considéré et/ou peut se produire à plusieurs reprises pendant la durée de vie des installations, malgré d'éventuelles mesures correctives.	P > 10 ⁻²
В	Probable	10 ⁻³ < P ≤ 10 ⁻²
B	S'est produit et/ou peut se produire pendant la durée de vie des installations.	10 (7310
	Improbable	
С	Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité.	$10^{-4} < P \le 10^{-3}$
	Rare	
D	S'est déjà produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité.	10 ⁻⁵ < P ≤ 10 ⁻⁴
	Extrêmement rare	-
E	Possible mais non rencontré au niveau mondial. N'est pas impossible au vu des connaissances actuelles.	≤ 10 ⁻⁵

Dans le cadre de l'étude de dangers des parcs éoliens, la probabilité de chaque événement accidentel identifié pour une éolienne est déterminée en fonction :

- De la bibliographie relative à l'évaluation des risques pour des éoliennes ;
- Du retour d'expérience français ;
- Des définitions qualitatives de l'arrêté du 29 septembre 2005.

Il convient de noter que la probabilité qui sera évaluée pour chaque scénario d'accident correspond à la probabilité qu'un événement redouté se produise sur l'éolienne (probabilité de départ) et non à la probabilité que cet événement produise un accident suite à la présence d'un véhicule ou d'une personne au point d'impact (probabilité d'atteinte). En effet, l'arrêté du 29 septembre 2005 impose une évaluation des probabilités de départ uniquement.

Cependant, on pourra rappeler que la probabilité qu'un accident sur une personne ou un bien se produise est très largement inférieure à la probabilité de départ de l'événement redouté.

La probabilité d'accident (Paccident) est en effet le produit de plusieurs probabilités :

Perc = probabilité que l'événement redouté central (défaillance) se produise = probabilité de départ

P_{orientation} = probabilité que l'éolienne soit orientée de manière à projeter un élément lors d'une défaillance dans la direction d'un point donné (en fonction des conditions de vent notamment)

P_{rotation} = probabilité que l'éolienne soit en rotation au moment où l'événement redouté se produit (en fonction de la vitesse du vent notamment)

P_{atteinte} = probabilité d'atteinte d'un point donné autour de l'éolienne (sachant que l'éolienne est orientée de manière à projeter un élément en direction de ce point et qu'elle est en rotation)

P_{présence} = probabilité de présence d'un enjeu donné au point d'impact sachant que l'élément est projeté en ce point donné

Dans le cadre des études de dangers des éoliennes, une approche majorante assimilant la probabilité d'accident (Paccident) à la probabilité de l'événement redouté central (Perc) a été retenue.

IX.2. Caractérisation des scenarii retenus

Pour l'ensemble des calculs on considérera les dimensions maximisantes dans le gabarit d'une éolienne de 180 m en bout de pale et d'une puissance nominale de 5 MW maximum.

Dans un souci de maximisation des risques, l'étude détaillée des risques sera effectuée en utilisant les caractéristiques suivantes :

• Hauteur maximale totale en bout de pales : Ht = 180 m ;

Rayon maximal du rotor : R = 70 m

• Hauteur maximale du moyeu : H = 110 m ;

Largeur du mât : L = 5 m ;

• Largeur maximisée de la pale : LB = 4,5 m.

IX.2.1. Effondrement de l'éolienne

IX.2.1.1. Zone d'effet

La zone d'effet de l'effondrement d'une éolienne correspond à une surface circulaire de rayon égal à la hauteur totale de l'éolienne en bout de pale, soit 180 m au maximum à partir de la base du mât dans le cas des éoliennes du parc éolien des Quatre Vents.

Cette méthodologie se rapproche de celles utilisées dans la bibliographie (*Guide for Risk-Based Zoning of wind Turbines, 2005* et *Specification of minimum distances, 2004*). Les risques d'atteinte d'une personne ou d'un bien en dehors de cette zone d'effet sont négligeables et ils n'ont jamais été relevés dans l'accidentologie ou la littérature spécialisée.

IX.2.1.2. Intensité

Pour le phénomène d'effondrement de l'éolienne, le degré d'exposition correspond au ratio entre la surface totale balayée par le rotor et la surface du mât non balayée par le rotor, d'une part, et la superficie de la zone d'effet du phénomène, d'autre part.

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène d'effondrement de l'éolienne dans le cas du parc éolien des Quatre Vents, R correspond à un demi-rotor (R = 70 m), H la hauteur maximale du moyeu (H = 110 m), L la largeur du mât (L = 5 m) et LB la largeur de la pale (LB = 4,5 m).

Tableau 14 : Détermination des paramètres relatifs à l'intensité du phénomène d'effondrement d'éolienne

Effondrement de l'éolienne (dans un rayon inférieur ou égal à la hauteur totale de l'éolienne en bout de pale, soit 180 m)					
Zone d'impact en m² Zone d'effet du phénomène étudié en m² Degré d'exposition du phénomène étudié en % Intensité					
$Z_i = (H \times L) + 3 \times R \times LB/2$ 1022.5 m ²	$Z_E = \pi \times (H+R)^2$ 101787.6 m ²	d = Z _I /Z _E x 100 1 %	Exposition forte		

L'intensité du phénomène d'effondrement est nulle au-delà de la zone d'effondrement.

IX.2.1.3. Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe IX.1.3.), il est possible de définir les différentes classes de gravité pour le phénomène d'effondrement, dans le rayon inférieur ou égal à la hauteur totale de l'éolienne :

- Plus de 100 personnes exposées → « Désastreux »
- Entre 10 et 100 personnes exposées → « Catastrophique »
- Entre 1 et 10 personnes exposées → « Important »
- Au plus 1 personne exposée → « Sérieux »
- Pas de zone de létalité en dehors de l'établissement \rightarrow « Modéré »

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène d'effondrement et la gravité associée :

Tableau 15 : Détermination des paramètres relatifs à la gravité du phénomène d'effondrement d'éolienne (Source : Guide technique, SER – FEE – INERIS)

	Effondrement de l'éolienne (dans un rayon inférieur ou égal à la hauteur totale de l'éolienne en bout de pale, soit 180 m)					
Eolienne	Superficies concernées par la zone d'effet (en ha)		Nombre de personnes permanentes (ou équivalent	Gravité		
	Terrains non aménagés	Terrains aménagés peu fréquentés	personnes permanentes)			
E1	10,18		0,102	« sérieuse »		
E2	10,02	0,155017335	0,116	« sérieuse »		
E3	10,06	0,121252375	0,101	« sérieuse »		
E4	10,18		0,102	« sérieuse »		

Par exemple, pour l'éolienne E1, on a : Nombre personnes permanentes = Nombre personnes champs + Nombre personnes chemins = 10.18/100 + 0.15/10 = 0,102. Pour chacune des éoliennes, le nombre de personnes permanentes est inférieur à 1. Cela correspond, pour ce type d'accident, à une gravité « sérieuse ».

IX.2.1.4. Probabilité

Pour l'effondrement d'une éolienne, les valeurs retenues dans la littérature sont détaillées dans le tableau suivant :

Tableau 16 : Paramètres relatifs à la probabilité du phénomène d'effondrement d'éolienne (Source : Guide technique, SER – FEE – INERIS)

Source	Fréquence	Justification
Guide for risk based zoning of wind turbines	4,5 x 10 ⁻⁴	Retour d'expérience
Specification of minimum distances	1,8 x 10 ⁻⁴ (effondrement de la nacelle et de la tour)	Retour d'expérience

Ces valeurs correspondent à une classe de probabilité « D » selon l'arrêté du 29 septembre 2005.

³ Une année d'expérience correspond à une éolienne observée pendant une année. Ainsi, si on a observé une éolienne pendant 5 ans et une autre pendant 7 ans, on aura au total 12 années d'expérience.

Le retour d'expérience français montre également une classe de probabilité « D ». En effet, il a été recensé seulement 7 événements pour 15 667 années d'expérience³, soit une probabilité de 4,47 x 10⁻⁴ par éolienne et par an.

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 septembre 2005 d'une probabilité « C », à savoir : « Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « D » est donc retenue par défaut pour ce type d'événement.

Néanmoins, les dispositions constructives des éoliennes ayant fortement évolué, le niveau de fiabilité est aujourd'hui bien meilleur. Des mesures de maîtrise des risques supplémentaires ont été mises en place sur les machines récentes et permettent de réduire significativement la probabilité d'effondrement. Ces mesures de sécurité sont notamment :

- Respect intégral des dispositions de la norme IEC 61 400-1;
- Contrôles réguliers des fondations et des différentes pièces d'assemblages ;
- Système de détection des survitesses et un système redondant de freinage;
- Système de détection des vents forts et un système redondant de freinage et de mise en sécurité des installations un système adapté est installé en cas de risque cyclonique.

On note d'ailleurs, dans le retour d'expérience français, que seul un effondrement a eu lieu sur les éoliennes mises en service après 2005, au parc éolien de Bouin (85) début 2018.

De manière générale, le respect des prescriptions de l'arrêté du 26 août 2011 modifié relatif aux installations éoliennes soumises à autorisation permet de s'assurer que les éoliennes font l'objet de mesures réduisant significativement la probabilité d'effondrement.

Il est considéré que la classe de probabilité de l'accident est « D », à savoir : « S'est produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité ».

IX.2.1.5. Acceptabilité

Dans le cas d'implantation d'éoliennes équipées des technologies récentes, compte tenu de la classe de probabilité d'un effondrement, on peut conclure à l'acceptabilité de ce phénomène si moins de 10 personnes sont exposées. Dans le cas présent, l'équivalent de 0,116 personne permanente est exposée au maximum.

Ainsi, pour le parc éolien des Quatre Vents, le phénomène d'effondrement des éoliennes constitue un risque acceptable pour les personnes.

IX.2.2. Chute d'éléments de l'éolienne

IX.2.2.1. Zone d'effet

La chute d'éléments comprend la chute de tous les équipements situés en hauteur : trappes, boulons, morceaux de pales ou pales entières. Le cas majorant est ici le cas de la chute de pale. Il est retenu dans l'étude détaillé des risques pour représenter toutes les chutes d'éléments.

Le risque de chute d'élément est cantonné à la zone de survol des pales, c'est-à-dire une zone d'effet correspondant à un disque de rayon égal à un demi-diamètre de rotor.

IX.2.2.2. Intensité

Pour le phénomène de chute d'éléments, le degré d'exposition correspond au ratio entre la surface d'un élément (cas majorant d'une pale entière se détachant de l'éolienne) et la superficie de la zone d'effet du phénomène (zone de survol).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de chute d'éléments de l'éolienne dans le cas du parc éolien des Quatre Vents.

d est le degré d'exposition, Z_I la zone d'impact, Z_E la zone d'effet, R correspond à un demi-rotor et LB la largeur de la base de la pale (LB = 4,5 m). Pour cet événement, deux rayons de rotors seront étudiés :

10

• R = 70 m suivant le gabarit définit en introduction du paragraphe IX.2

Tableau 17 : Détermination des paramètres relatifs à l'intensité du phénomène de chute d'éléments de l'éolienne (Source : Guide technique, SER – FEE – INERIS)

Chute d'éléments de l'éolienne (dans un rayon inférieur ou égal à D _{rotor} /2 = zone de survol, soit 70 m)				
Zone d'impact en m² Zone d'effet du phénomène Degré d'exposition du Intensité phénomène étudié en %				
$Z_{l} = R \times LB/2$ 157.5 m ²	Exposition forte			

L'intensité en dehors de la zone de survol est nulle.

IX.2.2.3. Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe IX.1.3.), il est possible de définir la classe de gravité pour le phénomène de chute de glace, dans la zone de survol de l'éolienne :

- Plus de 1000 personnes exposées → « Désastreux »
- Entre 100 et 1000 personnes exposées → « Catastrophique »
- Entre 10 et 100 personnes exposées → « Important »
- Moins de 10 personnes exposées → « Sérieux »
- Présence humaine exposée inférieure à « une personne » → « Modéré »

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de chute d'éléments et la gravité associée. On rappelle que les zones de survol des éoliennes du parc éolien des Quatre Vents sont des terrains non aménagés et très peu fréquentés, représentant donc 1 personne pour 100 ha d'après la fiche n°1 de la circulaire du 10 mai 2010.

Tableau 18 : Détermination des paramètres relatifs à la gravité du phénomène de chute d'éléments de l'éolienne (Source: Guide technique, SER – FEE – INERIS)

Chute d'éléments de l'éolienne (dans un rayon inférieur ou égal à R = D _{rotor} /2 = zone de survol, soit 70 m)				
Eolienne		par la zone d'effet (en a)	Nombre de personnes permanentes (ou	Gravité
Lonenne	Terrains non aménagés	Terrains aménagés peu fréquentés	équivalent personnes permanentes)	Gravite
E1	1,54		0,015	« sérieuse »
E2	1,54		0,015	« sérieuse »
E3	1,50	0,042699126	0,019	« sérieuse »
E4	1,54		0,015	« sérieuse »

La zone d'effet étant exactement la même que celle utilisée pour l'étude du scénario de chute de glace, le nombre de personnes permanentes reste identique pour chaque éolienne, et largement inférieur à 1.

⁴ Wind energy production in cold climate (WECO), Final report - Bengt Tammelin et al. – Finnish Meteorological Institute, Helsinki, 2000

IX.2.2.4. Probabilité

Peu d'élément sont disponibles dans la littérature pour évaluer la fréquence des événements de chute de pales ou d'éléments

Le retour d'expérience connu en France montre que ces événements ont une classe de probabilité « C » (2 chutes et 5 incendies pour 15 667 années d'expérience, soit 4,47 x 10⁻⁴ événement par éolienne et par an).

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 Septembre 2005 d'une probabilité « C » : « Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement.

IX.2.2.5. Acceptabilité

Avec une classe de probabilité « C », le risque de chute d'éléments pour chaque aérogénérateur est évalué comme acceptable, pour cet événement à un nombre de personnes permanentes (ou équivalent) inférieur à 1.

Ainsi, pour le parc éolien des Quatre Vents, avec 0,019 personne permanente exposée au maximum, le phénomène de chute d'éléments des éoliennes constitue un risque acceptable pour les personnes.

IX.2.3. Chute de glace

IX.2.3.1. Considérations générales

Les périodes de gel et l'humidité de l'air peuvent entraîner, dans des conditions de température et d'humidité de l'air bien particulières, une formation de givre ou de glace sur l'éolienne, ce qui induit des risques de chute de glace.

Selon l'étude WECO⁴, une grande partie du territoire français (hors zones de montagne) est concernée par moins d'un jour de formation de glace par an. Certains secteurs du territoire comme les zones côtières affichent des moyennes variant entre 2 et 7 jours de formation de glace par an.

Lors des périodes de dégel qui suivent les périodes de grand froid, des chutes de glace peuvent se produire depuis la structure de l'éolienne (nacelle, pales). Normalement, le givre qui se forme en fine pellicule sur les pales de l'éolienne fond avec le soleil. En cas de vents forts, des morceaux de glace peuvent se détacher. Ils se désagrègent généralement avant d'arriver au sol. Ce type de chute de glace est similaire à ce qu'on observe sur d'autres bâtiments et infrastructures.

IX.2.3.2. Zone d'effet

Le risque de chute de glace est cantonné à la zone de survol des pales, soit un disque de rayon égal à un demi- diamètre de rotor autour du mât de l'éolienne. Pour le parc éolien des Quatre Vents, la zone d'effet a donc un rayon de 70 mètres. Cependant, il convient de noter que, lorsque l'éolienne est à l'arrêt, les pales n'occupent qu'une faible partie de cette zone.

IX.2.3.3. Intensité

Pour le phénomène de chute de glace, le degré d'exposition correspond au ratio entre la surface d'un morceau de glace et la superficie de la zone d'effet du phénomène (zone de survol).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de chute de glace dans le cas du parc éolien des Quatre Vents. Z₁ est la zone d'impact, Z∉ est la zone d'effet, R correspond à un demi-rotor (R = 79 m), SG est la surface du morceau de glace majorant (SG = 1 m^2).

Le degré d'exposition est calculé pour un morceau de glace d'une surface de 1 m² de façon à majorer la zone d'impact et donc le degré d'exposition.

Tableau 19 : Détermination des paramètres relatifs à l'intensité du phénomène de chute de glace (Source : Guide technique. SER – FEE – INERIS)

Source: Guide Lectilique, SEN - FEL - INVENTS					
Chute de glace (dans un rayon inférieur ou égal à R = D _{rotor} /2 = zone de survol, soit 70 m)					
Zone d'impact en m² Zone d'effet du phénomène Degré d'exposition du Intensité phénomène étudié en %					
Z _I = SG 1 m ²	$Z_E = \pi \times R^2$ 15393.8 m ²	$D = Z_{I}/Z_{E} \times 100$ $0,01 \%$ $(x < 1 \%)$	Exposition modérée		

L'intensité est nulle hors de la zone de survol.

IX.2.3.4. Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe IX.1.3.), il est possible de définir les différentes classes de gravité pour le phénomène de chute de glace, dans la zone de survol de l'éolienne :

- Plus de 1000 personnes exposées → « Désastreux »
- Entre 100 et 1000 personnes exposées → « Catastrophique »
- Entre 10 et 100 personnes exposées → « Important »
- Moins de 10 personnes exposées → « Sérieux »
- Présence humaine exposée inférieure à « une personne » → « Modéré »

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de chute de glace et la gravité associée. On rappelle que les zones de survol des éoliennes du parc éolien des Quatre Vents sont en général des terrains non aménagés et très peu fréquentés, représentant donc 1 personne pour 100 ha d'après la fiche n°1 de la circulaire du 10 mai 2010.

Tableau 20 : Détermination des paramètres relatifs à la gravité du phénomène de chute de glace (Source : Guide technique, SER – FEE – INERIS)

Chute de glace (dans un rayon inférieur ou égal à R = D _{rotor} /2 = zone de survol, soit 70 m)				
Superficies concernées par la zone d'effet (ha) Nombre de personnes				
Eolienne	Terrains non aménagés Peu fréquentés		permanentes (ou équivalent personnes permanentes)	Gravité
E1	1,54		0,015	« Modérée »
E2	1,54		0,015	« Modérée »
E3	1,50	0,042699126	0,019	« Modérée »
E4	1,54		0,015	« Modérée »

Quel que soit le cas (existence de survol), le nombre de personnes permanentes dans la zone reste très largement inférieur à 1.

IX.2.3.5. Probabilité

De façon conservatrice, il est considéré que la probabilité est de classe « A », c'est-à-dire une probabilité supérieure à 10°2.

IX.2.3.6. Acceptabilité

Avec une classe de probabilité A, le risque de chute de glace pour chaque aérogénérateur est évalué comme acceptable dans le cas d'une gravité « Modérée » qui correspond pour cet événement à un nombre de personnes permanentes (ou équivalent) inférieur à 1.

Ainsi, pour le parc éolien des Quatre Vents, le phénomène de chute de glace des éoliennes constitue un risque acceptable pour les personnes.

Il convient également de rappeler que, conformément à l'article 14 de l'arrêté du 26 août 2011 modifié relatif aux installations éoliennes soumises à autorisation, un panneau informant le public des risques (et notamment des risques de chute de glace) sera installé sur le chemin d'accès de chaque aérogénérateur, c'est-à-dire en amont de la zone d'effet de ce phénomène. Cette mesure permettra de réduire les risques pour les personnes potentiellement présentes sur le site lors des épisodes de grand froid.

IX.2.4. Projection de glace

IX.2.4.1. Zone d'effet

L'accidentologie rapporte quelques cas de projection de glace. Ce phénomène est connu et possible, mais reste difficilement observable et n'a jamais occasionné de dommage sur les personnes ou les biens. En ce qui concerne la distance maximale atteinte par ce type de projectiles, il n'existe pas d'information dans l'accidentologie. L'étude WECO précédemment citée propose une distance d'effet fonction de la hauteur et du diamètre de l'éolienne, dans les cas où le nombre de jours de glace est important et où l'éolienne n'est pas équipée de système d'arrêt des éoliennes en cas de givre ou de glace :

Distance d'effet = 1,5 x (hauteur de moyeu + (2 x rayon du rotor)), soit, en tenant compte du présent gabarit :

Distance d'effet = 1,5 x (110 + 2 x 70) = 375 m

Cette distance de projection est jugée conservative dans des études postérieures, telles que l'étude « *Risk analysis of ice throw from wind turbines* » de 2003. A défaut de données fiables, il est proposé de considérer cette formule pour le calcul de la distance d'effet pour les projections de glace.

IX.2.4.2. Intensité

Pour le phénomène de projection de glace, le degré d'exposition correspond au ratio entre la surface d'un morceau de glace (cas majorant de 1 m²) et la superficie de la zone d'effet du phénomène.

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de projection de glace dans le cas du parc éolien des Quatre Vents. d est le degré d'exposition, Z_I la zone d'impact, Z_E la zone d'effet, R correspond à un demi-rotor (R = 70 m), H la hauteur maximale au moyeu (H = 110 m), et SG la surface majorante d'un morceau de glace.

Tableau 21 : Détermination des paramètres relatifs à l'intensité du phénomène de projection de glace (Source : Guide technique, SER – FEE – INERIS)

Projection de morceaux de glace (dans un rayon de R _{PG} = 375 m)				
Zone d'impact en m² Zone d'effet du phénomène Degré d'exposition du Intensité phénomène étudié en %				
$Z_{l} = SG$ 1 m^{2}	$Z_E = \pi \times 1.5 \times (H + (2 \times R))^2$ 441786.47 m ²	0,0002% (< 1 %)	Exposition modérée	

IX.2.4.3. Gravité

En fonction de cette intensité et des définitions issues du paragraphe IX.1.3., il est possible de définir les différentes classes de gravité pour le phénomène de projection de glace, dans la zone d'effet de ce phénomène :

Plus de 1000 personnes exposées → « Désastreux »

- Entre 100 et 1000 personnes exposées → « Catastrophique »
- Entre 10 et 100 personnes exposées → « Important »
- Moins de 10 personnes exposées → « Sérieux »
- Présence humaine exposée inférieure à « une personne » → « Modéré »

Il a été observé dans la littérature disponible (« *Risk analysis of ice throw from wind turbines* », 2003) qu'en cas de projection, les morceaux de glace se cassent en petits fragments dès qu'ils se détachent de la pale. La possibilité de l'impact de glace sur des personnes abritées par un bâtiment ou un véhicule est donc négligeable et ces personnes ne doivent pas être comptabilisées pour le calcul de la gravité.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de projection de glace et la gravité associée :

Tableau 22 : Détermination des paramètres relatifs à la gravité du phénomène de projection de glace (Source : Guide technique, SER – FEE – INERIS)

Projection de morceaux de glace (dans un rayon de R _{PG} = 375 m)				
Superficies concernées po		par la zone d'effet (ha)	Nombre de personnes	
Eolienne	nne Terrains non aménagés fréquentés		permanentes (ou équivalent personnes permanentes)	Gravité
E1	43,98	0,203179968	0,460	« Modérée »
E2	43,70	0,478596555	0,485	« Modérée »
E3	43,93	0,2483225	0,464	« Modérée »
E4	43,64	0,535999515	0,490	« Modérée »

Le nombre de personnes permanentes présentes est inférieur à 1.

IX.2.4.4. Probabilité

Au regard de la difficulté d'établir un retour d'expérience précis sur cet événement et considérant des éléments suivants :

- Les mesures de prévention de projection de glace imposées par l'arrêté du 26 août 2011 modifié ;
- Le recensement d'aucun accident lié à une projection de glace.

Une probabilité forfaitaire « B – événement probable » est proposé pour cet événement.

IX.2.4.5. Acceptabilité

Le risque de projection pour chaque aérogénérateur est évalué comme acceptable dans le cas d'un niveau de gravité « modérée ». Cela correspond pour cet événement à un nombre équivalent de personnes permanentes inférieures à 1.

Ainsi, pour le parc éolien des Quatre Vents, le phénomène de projection de morceaux de glace constitue un risque acceptable pour les personnes.

IX.2.5. Projection de pales ou de fragments de pales

IX.2.5.1. Zone d'effet

Dans l'accidentologie française rappelée en annexe, la distance maximale relevée et vérifiée pour une projection de fragment de pale est de 380 mètres par rapport au mât de l'éolienne. On constate que les autres données disponibles dans cette accidentologie montrent des distances d'effet inférieures.

_

L'accidentologie éolienne mondiale manque de fiabilité car la source la plus importante (en termes statistiques) est une base de données tenue par une association écossaise majoritairement opposée à l'énergie éolienne⁵.

L'analyse de ce recueil d'accidents indique une distance maximale de projection de l'ordre de 500 mètres à deux exceptions près :

- 1300 m rapporté pour un accident à Hundhammerfjellet en Norvège le 20/01/2006;
- 1000 m rapporté pour un accident à Burgos en Espagne le 09/12/2000.

Toutefois, pour ces deux accidents, les sources citées ont été vérifiées par le SER-FEE et aucune distance de projection n'y était mentionnée. Les distances ont ensuite été vérifiées auprès des constructeurs concernés et dans les deux cas elles n'excédaient pas 300 m.

Ensuite, pour l'ensemble des accidents pour lesquels une distance supérieure à 400 m était indiquée, les sources mentionnées dans le recueil ont été vérifiées de manière exhaustive (articles de journal par exemple), mais aucune d'elles ne mentionnait ces mêmes distances de projection. Quand une distance était écrite dans la source, il pouvait s'agir par exemple de la distance entre la maison la plus proche et l'éolienne, ou du périmètre de sécurité mis en place par les forces de l'ordre après l'accident, mais en aucun cas de la distance de projection réelle.

Pour autant, des études de risques déjà réalisées dans le monde ont utilisé une distance de 500 mètres, en particulier les études *Guide for Risk-Based Zoning of wind Turbines, 2005* et *Specification of minimum distances, 2004*, déjà citées auparavant.

Sur la base de ces éléments et de façon conservatrice, une distance d'effet de 500 mètres est considérée comme distance raisonnable pour la prise en compte des projections de pales ou de fragments de pales dans le cadre des études de dangers des parcs éoliens.

IX.2.5.2. Intensité

Pour le phénomène de projection de pale ou de fragment de pale, le degré d'exposition correspond au ratio entre la surface d'un élément (cas majorant d'une pale entière) et la superficie de la zone d'effet du phénomène (500 m à partir de la base du mât).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de projection de pales ou de fragments de pales de l'éolienne dans le cas du parc éolien des Quatre Vents.

d est le degré d'exposition, Z_I la zone d'impact, Z_E la zone d'effet, R correspond à un demi-rotor (R = 79 m) et LB la largeur de la base de la pale (LB = 4,5 m).

Tableau 23 : Détermination des paramètres relatifs à l'intensité du phénomène de projection de pales ou de fragments de pales (Source : Guide technique, SER – FEE – INERIS)

Projection de pale ou de fragment de pale (zone de 500 m autour de chaque éolienne)									
Zone d'impact en m² Zone d'effet du phénomène Degré d'exposition du fintensité phénomène étudié en %									
$Z_l = R*LB/2$ 157.5 m ²	$Z_E = \pi \times 500^2$ 785 398 m ²	0,02 % (< 1 %)	Exposition modérée						

IX.2.5.3. Gravité

En fonction de cette intensité et des définitions issues du paragraphe IX.1.3., il est possible de définir les différentes classes de gravité pour le phénomène de projection, dans la zone de 500 m autour de l'éolienne :

- Plus de 1000 personnes exposées → « Désastreux »
- Entre 100 et 1000 personnes exposées → « Catastrophique »
- Entre 10 et 100 personnes exposées → « Important »
- Moins de 10 personnes exposées → « Sérieux »

⁵ Wind Turbine Accident data to 31 March 2011, Caithness Windfarm Information Forum

Présence humaine exposée inférieure à « une personne » → « Modéré »

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de projection et la gravité associée :

Tableau 24 : Détermination des paramètres relatifs à la gravité du phénomène de projection de pales ou de fragments de pales (Source : Guide technique, SER – FEE – INERIS)

Projection de pale ou de fragment de pale (zone de 500 m autour de chaque éolienne)										
	Superficies concernées	par la zone d'effet (ha)	Nombre de personnes							
Eolienne	Terrains non aménagés	Terrains aménagés peu fréquentés	permanentes (ou équivalent personnes permanentes)	Gravité						
E1	77,92	0,620748231	0,841	« Modérée »						
E2	77,85	0,691596163	0,848	« Modérée »						
E3	78,12	0,418695834	0,823	« Modérée »						
E4	77,63	0,913945812	0,868	« Modérée »						

Le nombre de personnes permanentes présentes est inférieur à 1.

IX.2.5.4. Probabilité

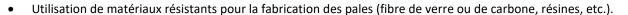
Les valeurs retenues dans la littérature pour une rupture de tout ou partie de pale sont détaillées dans le tableau suivant :

Tableau 25 : Paramètres relatifs à la probabilité du phénomène de projection de pales ou de fragments de pales (Source :

Guide technique, SER – FEE – INERIS)

Source	Fréquence	Justification		
Site specific hazard assessment for a wind farm	1 x 10 ⁻⁶	Respect de l'Eurocode EN 1990 – Basis of		
project, 2010		structural design		
Guide for risk-based zoning of wind turbines,	1, 1 x 10 ⁻³	Retour d'expérience au Danemark (1984-1992)		
2005	1, 1 × 10	et en Allemagne (1989-2001)		
Specification of minimum distances, 2004	6,1 x 10 ⁻⁴	Recherche Internet des accidents entre 1996 et		
Specification of minimum distances, 2004	0,1 10	2003		

Ces valeurs correspondent à des classes de probabilité de « B », « C » ou « E ».


Le retour d'expérience français montre également une classe de probabilité « C » (12 événements pour 15 667 années d'expérience, soit 7,66 x 10⁻⁴ événement par éolienne et par an).

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 Septembre 2005 d'une probabilité « C » : « Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « D » est donc retenue par défaut pour ce type d'événement.

Néanmoins, les dispositions constructives des éoliennes ayant fortement évolué, le niveau de fiabilité est aujourd'hui bien meilleur. Des mesures de maîtrise des risques supplémentaires ont été mises en place notamment :

- Les dispositions de la norme IEC 61 400-1;
- Les dispositions des normes IEC 61 400-24 et EN 62 305-3 relatives à la foudre ;
- Système de détection des survitesses et un système redondant de freinage;
- Système de détection des vents forts et un système redondant de freinage et de mise en sécurité des installations un système adapté est installé en cas de risque cyclonique;

De manière générale, le respect des prescriptions de l'arrêté du 26 août 2011 modifié relatif aux installations éoliennes soumises à autorisation permet de s'assurer que les éoliennes font l'objet de mesures réduisant significativement la probabilité de projection.

Il est considéré que la classe de probabilité de l'accident est « D » : « S'est produit mais a fait l'objet de mesures correctrices réduisant significativement la probabilité ».

IX.2.5.5. Acceptabilité

Avec une classe de probabilité de « D », le risque de projection de tout ou partie de pale pour chaque aérogénérateur est évalué comme acceptable dans le cas d'un nombre équivalent de personnes permanentes inférieur à 1000 dans la zone d'effet.

Ainsi, pour le parc éolien des Quatre Vents, le phénomène de projection de tout ou partie de pale des éoliennes constitue un risque acceptable pour les personnes.

X. Synthèse de l'étude détaillée des risques

X.1.1. Tableaux de synthèse des scenarii étudiés

Le Tableau 28 récapitule, pour chaque événement redouté central retenu, les paramètres de risques : la cinétique, l'intensité, la gravité et la probabilité. Les tableaux regrouperont les éoliennes qui ont le même profil de risque.

Il est important de noter que l'agrégation des éoliennes au sein d'un même profil de risque ne débouche pas sur une agrégation de leur niveau de probabilité ni du nombre de personnes exposées car les zones d'effet sont différentes.

X.1.2. Synthèse de l'acceptabilité des risques

Enfin, la dernière étape de l'étude détaillée des risques consiste à rappeler l'acceptabilité des accidents potentiels pour chacun des phénomènes dangereux étudiés.

On conclura à l'acceptabilité du risque généré par le parc éolien si le risque associé à chaque événement redouté central étudié, quelle que soit l'éolienne considérée, est acceptable.

Pour conclure à l'acceptabilité, la matrice de criticité ci-dessous, adaptée de la circulaire du 29 septembre 2005 reprise dans la circulaire du 10 mai 2010 mentionnée ci-dessus sera utilisée.

Tableau 26 : Détermination de l'acceptabilité

Récapitulatif Gravité Classe de Probabilité (traduit l'intensité et le D С В nombre de personnes exposées) Désastreux Catastrophique Important CE1 CE2 CE3 EE1 EE2 Sérieux EE3 EE4 CG2 CG3 CG4 FP1 FP2 Modérée FP3 FP4 PG3 PG4

Légende de la matrice :

Niveau de risque	Couleur	Acceptabilité
Risque très faible		acceptable
Risque faible		acceptable
Risque important		non acceptable

Il apparaît au regard de la matrice ainsi complétée que :

- Aucun accident n'apparaît dans les cases rouges de la matrice ;
- Certains accidents figurent en case jaune. Il s'agit des évènements correspondant à une chute de morceaux de glace sur les zones survolées par les pales.

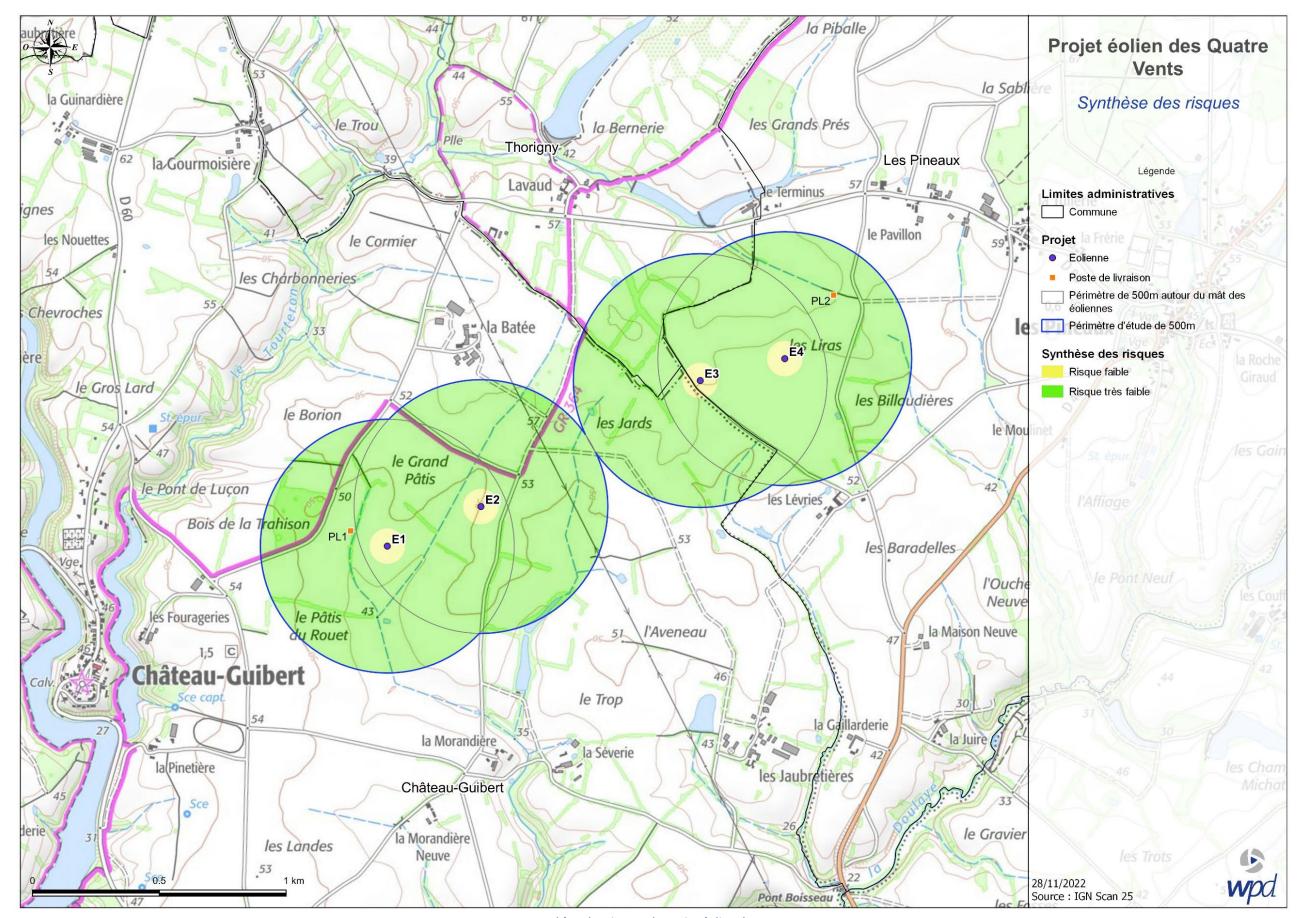
X.1.3 Cartographie des risques

Une carte de synthèse des risques fait apparaître les enjeux étudiés et les risques identifiés pour chacune des éoliennes.

Tableau 27 : Synthèse des risques

Scénario	Zone d'effet	Cinétique	Intensité	Probabilité	Gravité	Nom associé
Effondrement de l'éolienne	Disque de rayon égal à la hauteur totale en bout de pale, soit 180 m	Rapide	Exposition forte	D (pour des éoliennes récentes) ⁶	« sérieuse » pour chacune des éoliennes	EE
Chute d'élément de l'éolienne	Zone de survol, soit 70 m	e survol, Rapide Exposition C ch		« sérieuse » pour chacune des éoliennes	CE	
Chute de glace	Zone de survol, soit 70 m	Rapide	Exposition modérée	A sauf si les températures en hiver sont supérieures à 0°C	« Modérée » pour chacune des éoliennes	CG
Projection de glace	1,5 x (H + 2R) = 375 m autour de l'éolienne la plus haute	Rapide	Exposition modérée	B sauf si les températures en hiver sont supérieures à 0°C	« Modérée » pour chacune des éoliennes	PG
Projection de pale ou de fragment de pale	500 m autour de l'éolienne	Rapide	Exposition modérée	D (pour des éoliennes récentes) ⁷	« Modérée » pour chacune des éoliennes	FP

EE : Effondrement de l'éolienne


CE : Chute d'élément de l'éolienne

CG : Chute de morceaux de glace

PG: Projection de morceaux de glace

FP : Projection de pale ou de fragment de pale

⁶ Voir paragraphe IX.2.1

Carte 11 : Synthèse des risques du projet éolien des Quatre Vents

XI. Conclusion

Les mesures de maîtrise des risques mises en place par le constructeur des éoliennes et par l'exploitant du parc éolien permettent de prévenir et de limiter les risques pour la sécurité des personnes et des biens sur la zone d'implantation du projet éolien des Quatre Vents. De plus, le caractère très peu aménagé et peu fréquenté du site, ainsi que la distance par rapport aux premiers enjeux humains (habitations à plus de 584 mètres) permettent de limiter la probabilité et la gravité des accidents majeurs, qui sont tous acceptables pour l'ensemble du parc éolien.

Ainsi, deux évènements redoutés constituent un risque faible d'atteindre une personne non abritée située sous ou à proximité <u>d'une éolienne</u>, soit dans un rayon de 500 m autour du mât.

- La chute de morceaux de glace : Ce risque correspond à un degré d'exposition « modéré » (petits fragments de glace) et donc à une gravité « modérée », avec une probabilité d'occurrence de l'évènement supérieure à 10-2 par éolienne et par an.
- La chute d'éléments : Ce risque correspond à un degré d'exposition « forte » (petits fragments de glace) et donc à une gravité « sérieuse », avec une probabilité d'occurrence de l'évènement supérieure à 10-4 par éolienne et par an.

Il faut noter que les zones de survol des pales sont très peu fréquentées.

De plus, conformément à l'article 14 de l'arrêté du 26 août 2011 modifié, un affichage préventif informant des risques de chute de glace au pied des éoliennes sera mis en place afin de limiter les risques pour le public.

Les autres évènements redoutés constituent des risques très faibles. Les risques pour les infrastructures sont en général inexistants à très faibles pendant la phase d'exploitation des parcs éoliens.

Ponctuellement, certains événements sont susceptibles d'accroître la fréquentation du site. Compte tenu de leur faible fréquence et des mesures préventives proposées, les risques associés sont également très faibles.

Les accidents majeurs susceptibles de se produire sur le parc éolien des Quatre Vents sont tous acceptables pour l'ensemble du parc éolien au vu de l'analyse menée dans la présente étude de dangers.

47		
47		

Bibliographie et références utilisées

- L'évaluation des fréquences et des probabilités à partir des données de retour d'expérience (ref DRA-11-117406-04648A), INERIS, 2011
- NF EN 61400-1 Eoliennes Partie 1 : Exigences de conception, Juin 2006
- Wind Turbine Accident data to 31 March 2011, Caithness Windfarm Information Forum
- Site Specific Hazard Assessment for a wind farm project Case study Germanischer Lloyd, Windtest Kaiser-Wilhelm-Koog GmbH, 2010/08/24
- Guide for Risk-Based Zoning of wind Turbines, Energy research centre of the Netherlands (ECN), H. Braam, G.J. van Mulekom, R.W. Smit, 2005
- Specification of minimum distances, Dr-ing. Veenker ingenieurgesellschaft, 2004
- Permitting setback requirements for wind turbine in California, California Energy Commission Public Interest Energy Research Program, 2006
- Oméga 10 : Evaluation des barrières techniques de sécurité, INERIS, 2005
- Arrêté du 26 août 2011 modifié relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement
- Arrêté du 29 Septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation
- Circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 Juillet 2003
- Bilan des déplacements en Val-de-Marne, édition 2009, Conseil Général du Val-de-Marne
- Alpine test site Gütsch: monitoring of a wind turbine under icing conditions- R. Cattin etal.
- Wind energy production in cold climate (WECO), Final report Bengt Tammelin et al. Finnish Meteorological Institute, Helsinki, 2000
- Rapport sur la sécurité des installations éoliennes, Conseil Général des Mines Guillet R., Leteurtrois J.-P. juillet 2004
- Risk analysis of ice throw from wind turbines, Seifert H., Westerhellweg A., Kröning J. DEWI, avril 2003
- Wind energy in the BSR: impacts and causes of icing on wind turbines, Narvik University College, novembre 2005
- Accidentologie mondiale association CWIF: http://www.caithnesswindfarms.co.uk/page4.htm

Annexe 1 – Méthode de comptage des personnes pour la détermination de la gravité potentielle d'un accident à proximité d'une éolienne

La détermination du nombre de personnes permanentes (ou équivalent personnes permanentes) présentes dans chacune des zones d'effet se base sur la fiche n°1 de la circulaire du 10 mai 2010 relative aux règles méthodologiques applicables aux études de dangers. Cette fiche permet de compter aussi simplement que possible, selon des règles forfaitaires, le nombre de personnes exposées dans chacune des zones d'effet des phénomènes dangereux identifiés.

Dans le cadre de l'étude de dangers des parcs éoliens, cette méthode permet tout d'abord, au stade de la description de l'environnement de l'installation (partie III.4), de comptabiliser les enjeux humains présents dans les ensembles homogènes (terrains non bâtis, voies de circulation, zones habitées, ERP, zones industrielles, commerces...) situés dans l'aire d'étude de l'éolienne considérée.

D'autre part, cette méthode permet ensuite de déterminer la gravité associée à chaque phénomène dangereux retenu dans l'étude détaillée des risques (partie VIII).

Terrains non bâtis

Terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais...) : compter 1 personne par tranche de 100 ha.

Terrains aménagés mais peu fréquentés (voies de circulation non structurantes, chemins agricoles, plateformes de stockage, vignes, jardins et zones horticoles, gares de triage...) : compter 1 personne par tranche de 10 hectares.

Terrains aménagés et potentiellement fréquentés ou très fréquentés (parkings, parcs et jardins publics, zones de baignades surveillées, terrains de sport (sans gradin néanmoins...) : compter la capacité du terrain et a minima 10 personnes à l'hectare.

Voies de circulation

Les voies de circulation n'ont à être prises en considération que si elles sont empruntées par un nombre significatif de personnes. En effet, les voies de circulation non structurantes (< 2000 véhicules/jour) sont déjà comptées dans la catégorie des terrains aménagés mais peu fréquentés.

Voies de circulation automobiles

Dans le cas général, on comptera 0,4 personne permanente par kilomètre exposé par tranche de 100 véhicules/jour.

Exemple : 20 000 véhicules/jour sur une zone de 500 m = $0.4 \times 0.5 \times 20$ 000/100 = 40 personnes.

	Nombre de personnes exposées sur voies de communication structurantes en fonction du linéaire et du trafic												
					Linéaire de ro	oute compris	dans la zone	d'effet (en m)				
		100	200	300	400	500	600	700	800	900	1000		
	2 000	0,8	1,6	2,4	3,2	4	4,8	5,6	6,4	7,2	8		
	3 000	1,2	2,4	3,6	4,8	6	7,2	8,4	9,6	10,8	12		
	4 000	1,6	3,2	4,8	6,4	8	9,6	11,2	12,8	14,4	16		
Ē	5 000	2	4	6	8	10	12	14	16	18	20		
jo	7 500	3	6	9	12	15	18	21	24	27	30		
véhicules/jour)	10 000	4	8	12	16	20	24	28	32	36	40		
icu	20 000	8	16	24	32	40	48	56	64	72	80		
	30 000	12	24	36	48	60	72	84	96	108	120		
(eu	40 000	16	32	48	64	80	96	112	128	144	160		
Trafic	50 000	20	40	60	80	100	120	140	160	180	200		
Tra	60 000	24	48	72	96	120	144	168	192	216	240		
	70 000	28	56	84	112	140	168	196	224	252	280		
	80 000	32	64	96	128	160	192	224	256	288	320		
	90 000	36	72	108	144	180	216	252	288	324	360		
	100 000	40	80	120	160	200	240	280	320	360	400		

Voies ferroviaires

Train de voyageurs : compter 1 train équivalent à 100 véhicules (soit 0,4 personne exposée en permanence par kilomètre et par train), en comptant le nombre réel de trains circulant quotidiennement sur la voie.

Voies navigables

Compter 0,1 personne permanente par kilomètre exposé et par péniche/jour.

Chemins et voies piétonnes

Les chemins et voies piétonnes ne sont pas à prendre en compte, sauf pour les chemins de randonnée, car les personnes les fréquentant sont généralement déjà comptées comme habitants ou salariés exposés.

Pour les chemins de promenade, de randonnée : compter 2 personnes pour 1 km par tranche de 100 promeneurs/jour en moyenne.

Logements

Pour les logements : compter la moyenne INSEE par logement (par défaut : 2,5 personnes), sauf si les données locales indiquent un autre chiffre.

Etablissements recevant du public (ERP)

Compter les ERP (bâtiments d'enseignement, de service public, de soins, de loisir, religieux, grands centres commerciaux etc.) en fonction de leur capacité d'accueil (au sens des catégories du code de la construction et de l'habitation), le cas échéant sans compter leurs routes d'accès (cf. paragraphe sur les voies de circulation automobile).

Les commerces et ERP de catégorie 5 dont la capacité n'est pas définie peuvent être traités de la façon suivante :

- compter 10 personnes par magasin de détail de proximité (boulangerie et autre alimentation, presse et coiffeur) ;
- compter 15 personnes pour les tabacs, cafés, restaurants, supérettes et bureaux de poste.

Les chiffres précédents peuvent être remplacés par des chiffres issus du retour d'expérience local pour peu qu'ils restent représentatifs du maximum de personnes présentes et que la source du chiffre soit soigneusement justifiée.

Une distance d'éloignement de 500 m aux habitations est imposée par la loi. La présence d'habitations ou d'ERP ne se rencontreront peu en pratique.

Zones d'activité

Zones d'activités (industries et autres activités ne recevant pas habituellement de public) : prendre le nombre de salariés (ou le nombre maximal de personnes présentes simultanément dans le cas de travail en équipes), le cas échéant sans compter leurs routes d'accès.

et			
les			
en			
es			
c.) nnt			
nt			
se			
ou cer			
49			

Annexe 2 – Tableau de l'accidentologie française

Le tableau ci-dessous a été établi par le groupe de travail constitué pour la réalisation du guide technique pour l'élaboration de l'étude de dangers des parcs éoliens, et complété avec les évènements postérieurs à sa date de parution. Il recense l'ensemble des accidents et incidents connus en France concernant la filière éolienne entre 2000 et mi 2012. L'analyse de ces données est présentée dans la partie VI. de la trame type de l'étude de dangers.

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Effondrement	Novembre 2000	Port la Nouvelle	Aude	0,5	1993	Non	Le mât d'une éolienne s'est plié lors d'une tempête suite à la perte d'une pale (coupure courant prolongée pendant 4 jours suite à la tempête)	Tempête avec foudre répétée	Rapport du CGM Site Vent de Colère	-
Rupture de pale	2001	Sallèles-Limousis	Aude	0,75	1998	Non	Bris de pales en bois (avec inserts)	?	Site Vent de Colère	Information peu précise
Effondrement	01/02/2002	Wormhout	Nord	0,4	1997	Non	Bris d'hélice et mât plié	Tempête	Rapport du CGM Site Vent du Bocage	-
Maintenance	01/07/2002	Port la Nouvelle – Sigean	Aude	0,66	2000	Oui	Grave électrisation avec brûlures d'un technicien	Lors de mesures pour caractériser la partie haute d'un transformateur 690V/20kV en tension. Le mètre utilisé par la victime, déroulé sur 1,46m, s'est soudainement plié et est entré dans la zone du transformateur, créant un arc électrique.	Rapport du CGM	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Effondrement	28/12/2002	Névian - Grande Garrigue	Aude	0,85	2002	Oui	Effondrement d'une éolienne suite au dysfonctionnement du système de freinage	Tempête + dysfonctionnement du système de freinage	Rapport du CGM Site Vent de Colère Article de presse (Midi Libre)	-
Rupture de pale	25/02/2002	Sallèles-Limousis	Aude	0,75	1998	Non	Bris de pale en bois (avec inserts) sur une éolienne bipale	Tempête	Article de presse (La Dépêche du 26/03/2003)	Information peu précise
Rupture de pale	05/11/2003	Sallèles-Limousis	Aude	0,75	1998	Non	Bris de pales en bois (avec inserts) sur trois éoliennes. Morceaux de pales disséminés sur 100 m.	Dysfonctionnement du système de freinage	Rapport du CGM Article de presse (Midi Libre du 15/11/2003)	-

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Effondrement	01/01/2004	Le Portel – Boulogne sur Mer	Pas de Calais	0,75	2002	Non	Cassure d'une pale, chute du mât et destruction totale. Une pale tombe sur la plage et les deux autres dérivent sur 8 km.	Tempête	Base de données ARIA Rapport du CGM Site Vent de Colère Articles de presse (Windpower Monthly May 2004, La Voix du Nord du 02/01/2004)	-
Effondrement	20/03/2004	Loon Plage – Port de Dunkerque	Nord	0,3	1996	Non	Couchage du mât d'une des 9 éoliennes suite à l'arrachement de la fondation	Rupture de 3 des 4 micropieux de la fondation, erreur de calcul (facteur de 10)	Base de données ARIA Rapport du CGM Site Vent de Colère Articles de presse (La Voix du Nord du 20/03/2004 et du 21/03/2004)	-
Rupture de pale	22/06/2004	Pleyber-Christ - Site du Télégraphe	Finistère	0,3	2001	Non	Survitesse puis éjection de bouts de pales de 1,5 et 2,5 m à 50 m, mât intact	Tempête + problème d'allongement des pales et retrait de sécurité (débridage)	Rapport du CGM Articles de presse (Le Télégramme, Ouest France du 09/07/2004)	-
Rupture de pale	08/07/2004	Pleyber-Christ - Site du Télégraphe	Finistère	0,3	2001	Non	Survitesse puis éjection de bouts de pales de 1,5 et 2,5m à 50m, mat intact	Tempête + problème d'allongement des pales et retrait de sécurité (débridage)	Rapport du CGM Articles de presse (Le Télégramme, Ouest France du 09/07/2004)	Incident identique à celui s'étant produit 15 jours auparavant
Rupture de pale	2004	Escales-Conilhac	Aude	0,75	2003	Non	Bris de trois pales		Site Vent de Colère	Information peu précise
Rupture de pale + incendie	22/12/2004	Montjoyer-Rochefort	Drôme	0,75	2004	Non	Bris des trois pales et début d'incendie sur une éolienne (survitesse de plus de 60 tr/min)	Survitesse due à une maintenance en cours, problème de régulation, et dysfonctionnement du système de freinage	Base de données ARIA Article de presse (La Tribune du 30/12/2004) Site Vent de Colère	-
Rupture de pale	2005	Wormhout	Nord	0,4	1997	Non	Bris de pale		Site Vent de Colère	Information peu précise
Rupture de pale	08/10/2006	Pleyber-Christ - Site du Télégraphe	Finistère	0,3	2004	Non	Chute d'une pale de 20 m pesant 3 tonnes	Allongement des pales et retrait de sécurité (débridage), pas de REX suite aux précédents accidents sur le même parc	Site FED Articles de presse (Ouest France) Journal FR3	-

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	18/11/2006	Roquetaillade	Aude	0,66	2001	Oui	Acte de malveillance: explosion de bonbonne de gaz au pied de 2 éoliennes. L'une d'entre elles a mis le feu en pieds de mat qui s'est propagé jusqu'à la nacelle.	Malveillance / incendie criminel	Communiqués de presse exploitant Articles de presse (La Dépêche, Midi Libre)	-
Effondrement	03/12/2006	Bondues	Nord	0,08	1993	Non	Sectionnement du mât puis effondrement d'une éolienne dans une zone industrielle	Tempête (vents mesurés à 137Kmh)	Article de presse (La Voix du Nord)	-
Rupture de pale	31/12/2006	Ally	Haute-Loire	1,5	2005	Oui	Chute de pale lors d'un chantier de maintenance visant à remplacer les rotors	Accident faisant suite à une opération de maintenance	Site Vent de Colère	Ne concerne pas directement l'étude de dangers (accident pendant la phase chantier)
Rupture de pale	03/2007	Clitourps	Manche	0,66	2005	Oui	Rupture d'un morceau de pale de 4 m et éjection à environ 80 m de distance dans un champ	Cause pas éclaircie	Site FED Interne exploitant	-
Chute d'élément	11/10/2007	Plouvien	Finistère	1,3	2007	Non	Chute d'un élément de la nacelle (trappe de visite de 50 cm de diamètre)	Défaut au niveau des charnières de la trappe de visite. Correctif appliqué et retrofit des boulons de charnières effectué sur toutes les machines en exploitation.	Article de presse (Le Télégramme)	-
Emballement	03/2008	Dinéault	Finistère	0,3	2002	Non	Emballement de l'éolienne mais pas de bris de pale	Tempête + système de freinage hors service (boulon manquant)	Base de données ARIA	Non utilisable directement dans l'étude de dangers (événement unique et sans répercussion potentielle sur les personnes)

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Collision avion	04/2008	Plouguin	Finistère	2	2004	Non	Léger choc entre l'aile d'un bimoteur Beechcraftch (liaison Ouessant-Brest) et une pale d'éolienne à l'arrêt. Perte d'une pièce de protection au bout d'aile. Mise à l'arrêt de la machine pour inspection.	Mauvaise météo, conditions de vol difficiles (sous le plafond des 1000m imposé par le survol de la zone) et faute de pilotage (altitude trop basse)	Articles de presse (Le Télégramme, Le Post)	Ne concerne pas directement l'étude de dangers (accident aéronautique)
Rupture de pale	19/07/2008	Erize-la-Brûlée - Voie Sacrée	Meuse	2	2007	Oui	Chute de pale et projection de morceaux de pale suite à un coup de foudre	Foudre + défaut de pale	Communiqué de presse exploitant Article de presse (l'Est Républicain 22/07/2008)	-
Incendie	28/08/2008	Vauvillers	Somme	2	2006	Oui	Incendie de la nacelle	Problème au niveau d'éléments électroniques	Dépêche AFP 28/08/2008	-
Rupture de pale	26/12/2008	Raival - Voie Sacrée	Meuse	2	2007	Oui	Chute de pale		Communiqué de presse exploitant Article de presse (l'Est Républicain)	-
Maintenance	26/01/2009	Clastres	Aisne	2,75	2004	Oui	Accident électrique ayant entraîné la brûlure de deux agents de maintenance	Accident électrique (explosion d'un convertisseur)	Base de données ARIA	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Rupture de pale	08/06/2009	Bolléne	Vaucluse	2,3	2009	Oui	Bout de pale d'une éolienne ouvert	Coup de foudre sur la pale	Interne exploitant	Non utilisable dans les chutes ou les projections (la pale est restée accrochée)
Incendie	21/10/2009	Froidfond - Espinassière	Vendée	2	2006	Oui	Incendie de la nacelle	Court-circuit dans transformateur sec embarqué en nacelle ?	Article de presse (Ouest-France) Communiqué de presse exploitant Site FED	-
Incendie	30/10/2009	Freyssenet	Ardèche	2	2005	Oui	Incendie de la nacelle	Court-circuit faisant suite à une opération de maintenance (problème sur une armoire électrique)	Base de données ARIA Site FED Article de presse (Le Dauphiné)	-

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Maintenance	20/04/2010	Toufflers	Nord	0,15	1993	Non	Décès d'un technicien au cours d'une opération de maintenance	Crise cardiaque	Article de presse (La Voix du Nord 20/04/2010)	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Effondrement	30/05/2010	Port la Nouvelle	Aude	0,2	1991	Non	Effondrement d'une éolienne	Le rotor avait été endommagé par l'effet d'une survitesse. La dernière pale (entière) a pris le vent créant un balourd. Le sommet de la tour a plié et est venu buter contre la base entrainant la chute de l'ensemble.	Interne exploitant	-
Incendie	19/09/2010	Montjoyer-Rochefort	Drôme	0,75	2004	Non	Emballement de deux éoliennes et incendie des nacelles.	Maintenance en cours, problème de régulation, freinage impossible, évacuation du personnel, survitesse de +/- 60 tr/min	Articles de presse Communiqué de presse SER-FEE	-
Maintenance	15/12/2010	Pouillé-les-Côteaux	Loire Atlantique	2,3	2010	Oui	Chute de 3 m d'un technicien de maintenance à l'intérieur de l'éolienne. L'homme de 22 ans a été secouru par le GRIMP de Nantes. Aucune fracture ni blessure grave.	-	Interne SER-FEE	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Transport	31/05/2011	Mesvres	Saône-et-Loire	-	-	-	Collision entre un train régional et un convoi exceptionnel transportant une pale d'éolienne, au niveau d'un passage à niveau Aucun blessé	-	Article de presse (Le Bien Public 01/06/2011)	Ne concerne pas directement l'étude de dangers (accident de transport hors site éolien)
Rupture de pale	14/12/2011	Non communiqué	Non communiqué	2,5	2003	Oui	Pale endommagée par la foudre. Fragments retrouvés par l'exploitant agricole à une distance n'excédant pas 300 m.	Foudre	Interne exploitant	Information peu précise sur la distance d'effet

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	03/01/2012	Non communiqué	Non communiqué	2,3	2006	Oui	Départ de feu en pied de tour. Acte de vandalisme : la porte de l'éolienne a été découpée pour y introduire des pneus et de l'huile que l'on a essayé d'incendier. Le feu ne s'est pas propagé, dégâts très limités et restreints au pied de la tour.	Malveillance / incendie criminel	Interne exploitant	Non utilisable directement dans l'étude de dangers (pas de propagation de l'incendie)
Rupture de pale	05/01/2012	Widehem	Pas-de-Calais	0,75	2000	Non	Bris de pales, dont des fragments ont été projetés jusqu'à 380 m. Aucun blessé et aucun dégât matériel (en dehors de l'éolienne).	Tempête + panne d'électricité	Article de presse (La Voix du Nord 06/01/2012) Vidéo DailyMotion Interne exploitant	-
Rupture de pale	15/05/2012	Chemin d'Ablis	Eure-et-Loir	2	2008	Oui	Chute d'une pale de 9 tonnes et rupture du roulement raccordant la pale au hub	Traces de corrosion dans les trous d'alésage traversant une des bagues du roulement	Articles de presse (leFigaro 22/05/2012) et ARIA (n°42919)	-
Effondrement de la tour	30/05/2012	Non communiqué	Aude	0,2	1991	Non	Effondrement de la tour en treillis de 30 m de haut	Rafales de vent à 130 km/h observées durant la nuit	ARIA (n°43110)	-
Projection d'un élément de la pale	01/11/2012	Non communiqué	Cantal	2,5	2011	Oui	Projection d'un élément de 400 g constitutif d'une pale d'éolienne à 70 m du mât	-	ARIA (n°43120)	-
Incendie	05/11/2012	Non communiqué	Aude	0,66	-	-	Projections incandescentes enflamment 80 m² de garrigue environnante	Câbles électriques non résistants au feu à l'intérieur du mât	ARIA (n°43228)	-

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	17/03/2013	-	Marne	-	2011	Oui	Feu dans la nacelle d'une éolienne. Une des pales tombe au sol, une autre menace de tomber.	Défaillance électrique	ARIA (n°43630)	L'exploitant et la société chargée de la maintenance étudient la possibilité d'installer des détecteurs de fumées dans les éoliennes.
Incendie	09/01/2014	-	Ardennes	2,5	-	-	Feu se déclarant vers 18 h au niveau de la partie moteur d'une éolienne.	Incident électrique	ARIA (n°44831)	-
Rupture de pale	20/01/2014	-	Aude	-	-	-	Chute de pale liées à la rupture d'une pièce à la base de la pale	Usure prématurée	ARIA (n°44870)	Changement du design des pièces
Rupture de pale	14/11/2014	Sources de la Loire	Ardèche	-	-	-	Chute d'une pale un jour d'orage ou les vents atteignent 130km/h	-	ARIA (n°45960)	-
Projection d'un élément de la pale	05/12/2014	-	Aude		-	-	Lors d'une inspection, des techniciens de maintenance constatent le détachement de l'extrémité d'une pale	Défaillance matérielle ou à un décollage sur les plaques en fibre de verre	ARIA (n°46030)	-
Incendie	24/08/2015	-	Eure-et-Loir	-	2007	-	Le moteur d'une éolienne a pris feu	-	Article de presse (la république du centre 24/08/2015)	-
Chute d'élément	10/11/2015	Ménil-la-Horgne	Meuse	10.5	2007	-	Chute des trois pales et du rotor d'une éolienne	-	Article de presse (France 3 Lorraine 14/11/2015 et L'est républicain 13/11/2015)	-

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Rupture de pale	07/02/2016	Conilhac-Corbières	Aude	-	-	-	Chute de l'aérofrein d'une des pales	Rupture du point d'attache du système mécanique de commande de l'aérofrein	ARIA (n°47675)	-
Chute de pale et projection de pale	08/02/2016	Dineault	Finistère	0,3 MW	1999	-	Une pale chute au sol, un autre se déchire et est retrouvé à 40m du pied du mât	-	ARIA (n°47680)	-
Chute de pale	07/03/2016	Calanhel	Côtes-d'Armor	0,80 MW	-	-	Rupture et chute de la pale à 5m du mât.	Rupture du système d'orientation	ARIA (n°47763)	-
Chute de pale	18/01/2017	Nurlu	Somme	-	-	-	Décrochage et chute d'une partie de pale	-	Article de presse (France 3 Picardie 19/01/2017)	-
Incendie	06/06/2017	Allonnes	Eure-et-Loir	-	-	-	Incendie du moteur de l'éolienne	-	Article de presse (L'écho républicain, 06/06/2017)	-
Chute de pale	03/08/2017	Parc de l'Osière, commune de Priez	Aisne	-	-	-	Rupture d'un partie de la pale d'éolienne	-	Article de presse (L'ardennais, 10/08/2017, l'Union 10/08/2017)	-
Effondrement de l'éolienne	01/01/2018	Parc éolien de Bouin	Vendée	2,4 MW	2003	-	Effondrement de l'éolienne	-	Presse	-
Chute d'une pale d'éolienne	04/01/2018	Parc éolien de Rampont	Meuse	2 MW	2008	-	Chute d'une pale d'éolienne	Episode venteux	Base de données ARIA (n°50905 – 04/01/2018)	Les morceaux les plus éloignés sont ramassés à 200 m

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Chute de l'aérofrein d'une pale d'éolienne	06/02/2018	Parc éolien de Conilhac-Corbières	Aude	2,3 MW	2014	-	L'aérofrein d'une pale d'éolienne a chuté au sol	Défaut sur l'électronique de puissance	Base de données ARIA (n°51122 – 06/02/2018)	-
Incendie	01/06/2018	Parc éolien de Marsanne	Drôme	2 MW	2008	·	Incendie	Incendie criminel	Communiqué de presse (RES, 01/06/2018)	-
Incendie	05/06/2018	Parc éolien du Causse d'Aumelas	Hérault	1,45 MW	2013	Non	Incendie de la nacelle et chute d'éléments au sol	Incendie électrique	Base de données ARIA (n°51681 – 05/06/2018)	-
Incendie	03/08/2018	Parc des Monts de l'Ain	Ain	2,05 MW	2017	-	Incendie	Incendie criminel	France 3 Auvergne- Rhône-Alpes (03/08/2018)	-
Effondrement de l'éolienne	07/11/2018	Parc éolien de la Vallée du Moulin, commune de Guigneville	Loiret	3 MW	2010	-	Effondrement de l'éolienne	Effondrement de l'éolienne	Article de presse (FranceInfo Centre Val de Loire, 07/11/2018)	-
Effondrement d'une éolienne	23/01/2019	Parc éolien de Boutavent	Oise	1,2 MW	2011	-	Mât de l'éolienne plié en 2 probablement dû à un problème sur le générateur	Effondrement de l'éolienne	France 3 Hauts-de- France	Débris retrouvés dans un rayon de 300 m autour de l'éolienne
Chute d'une pale	30/01/2019	Parc éolien de Roquetaillade	Aude	-	2001	Non	La pale d'un aérogénérateur a chuté au sol.	Défaillance matérielle	Ladepeche.fr (19/02/2019)	Incidents similaires déjà produits sur ce parc éolien
Rupture de pale	27/02/2017	Parc éolien de Levoncourt	Meuse	2	2011	-	La pointe d'une pale d'éolienne s'est rompue pendant un orage	Rafale de vent	Base de données ARIA (N° 49359)	-

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Chute d'un fragment de pale	17/01/2019	Parc éolien du Bambesch	Moselle	2	2007	-	Bris et projection de plusieurs morceaux de pale	-	Le Républicain Lorrain (30/01/2019)	-
Effondrement d'une éolienne	23/01/2019	Parc éolien de Boutavent	Oise	1,2 MW	2011	-	Mât de l'éolienne plié en 2 probablement dû à un problème sur le générateur	Effondrement de l'éolienne	France 3 Hauts-de- France	Débris retrouvés dans un rayon de 300 m autour de l'éolienne
Chute d'une pale	30/01/2019	Parc éolien de Roquetaillade	Aude	-	2001	Non	La pale d'un aérogénérateur a chuté au sol.	Défaillance matérielle	Ladepeche.fr (19/02/2019)	Incidents similaires déjà produits sur ce parc éolien
Incendie sur une éolienne	18/06/2019	Parc éolien de Quesnoy-sur-Airaines	Somme	11,5 MW	2011	Non	Un feu se déclare sur une éolienne située dans un parc éolien qui en compte 5	Court-circuit	Base de données ARIA (n°53857)	-
Incendie	25/06/2019	Parc éolien de Kéruelqui, Ambon	Morbihan	-	2008	Non	Incendie dans la machinerie, au niveau de la turbine	Défaillance ou survitesse	Ouest-France (26/06/2019)	-
Chute d'un bout de pale d'une éolienne	27/06/2019	Parc éolien de Charly- sur-Marne	Aisne	22 MW	2009	Non	Le bout de la pale abîmée est projeté en 2 morceaux, l'un à 15 m, l'autre à 100 m dans l'enceinte du parc éolien. Chaque morceau correspond à une face de la pale	Très fortes chaleurs	Base de données ARIA (N°53894)	Débris projetés à 100 m maximum
Chute du capot de la nacelle d'une éolienne	28/11/2019	Parc éolien de Hangest-en-Santerre	Somme	20 MW	2017	Oui	Dans un parc éolien, le capot se situant à l'extrémité de la nacelle d'une éolienne se décroche et tombe au sol	-	Base de données ARIA (N°54761)	-

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Perte de contrôle d'une éolienne lors d'une mise en service	06/12/2019	Parc éolien de Avelanges	Côte-d'Or	15 MW	2019	Oui	Alors qu'une équipe d'installation réalise un travail d'étiquetage sur une éolienne, cette dernière commence à tourner malgré l'absence de raccordement électrique	Erreur de positionnement des angles des pales	Base de données ARIA (N°54898)	Mise en place d'un périmètre de 800 m et blocage de la route à proximité
Fumée blanche au niveau d'une éolienne	16/12/2019	Parc éolien de Poinville	Eure-et-Loir	11,5 MW	2006	Oui	Un feu sans flamme se déclare sur une éolienne d'un parc éolien	Seules les gaines protectrices des câbles de puissance ont brûlé sur 10 m de long	Base de données ARIA (N°54985)	-
Rupture d'une pâle d'éolienne lors du passage d'une tempête	09/02/2020	Parc éolien de Beaurevoir	Aisne	10 MW	2009	Non	Une pâle d'une éolienne située dans un parc composée de 5 machines, se brise lors du passage de la tempête Ciara	L'éolienne était à l'arrêt, pour une opération de maintenance, au moment de la tempête	Base de données ARIA n°55055	Périmètre de sécurité dans l'aire de survol
Deux pales d'éoliennes se brisent	09/12/2019 25/02/2020	Parc éolien de Theil- Rabier et Montjean	Charente	12 MW	2016	Oui	Deux pales d'éoliennes du parc de Montjean – Theil- Rabier ont rompu en moins de 3 mois	-	Charente Libre (04/03/2020)	-
Une pale sévèrement endommagée au parc éolien à Plouarzel	30/04/2020	Parc éolien de Plouarzel	Finistère	16,5 MW	2000	Non	Une pale d'éolienne du parc des Deux-Croix en Plouarzel (29) a présenté une pliure inquiétante, laissant penser qu'elle pourrait casser et tomber au sol	-	Le Télégramme (30/04/2020)	-
Une pale d'éolienne s'écrase dans un champ à Plémet	28/06/2020	Parc éolien de Plémet	Côtes d'Armor	12 MW	2015	Oui	Juste d'une pale d'une éolienne	-	France 3 Bretagne (28/06/2020)	-
Pale cassée à Bignan après des vents forts	15/11/2020	Parc éolien de la ville aux vents	Morbihan	2 MW	2009	Non	Une pale d'une éolienne s'est cassée		Ouest-France (15/11/2020)	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Une éolienne perd sa pale à Saint-George-sur-Arnon	12/01/2021	Parc des Vignes	Indre	12.5 MW	2009	Non	Une pale d'une éolienne s'est cassée		La Nouvelle république (12/01/2021)	
Casse d'une pale d'éolienne	12/02/2021	Parc éolien de l'Osière	Aisne	14 MW	2017	NC	Une pale d'éolienne s'est brisée et est tombée au sol.		Lunion.fr (16/02/2021)	
Chute de morceaux de pale d'une éolienne	13/02/2021	Vallée des Gommiers	Loiret	12 MW	2007	NC	Une pale d'une éolienne a chuté		BDD IRIS	
Accident bris de pale	20/10/2021	Parc éolien d'Auzay	Vendée	37.8 MW	2021	NC	Une pale d'éolienne arrachée par les vents violents en Vendée		ouest-france.fr (21/10/2021)	
Casse d'une pale d'éolienne	03/12/2021	Parc éolien de la souterraine	Creuse	8 MW	2013	NC	Une pale d'éolienne tombe de son mât à Saint- Agnant-de-Versillat en Creuse		lamontagne.fr (03/12/2021)	
Eclatement d'une pale	02/04/2022	Parc éolien du Lauragais	Haute-Garonne	8.3 MW	NC	NC	La pale d'une éolienne se désagrège à Saint-Félix- Lauragais		actu.fr (04/04/2022)	

Annexe 3 – Glossaire

Les définitions ci-dessous sont reprises de la circulaire du 10 mai 2010. Ces définitions sont couramment utilisées dans le domaine de l'évaluation des risques en France.

Accident: Evénement non désiré, tel qu'une émission de substance toxique, un incendie ou une explosion résultant de développements incontrôlés survenus au cours de l'exploitation d'un établissement qui entraîne des conséquences/ dommages vis à vis des personnes, des biens ou de l'environnement et de l'entreprise en général. C'est la réalisation d'un phénomène dangereux, combinée à la présence d'enjeux vulnérables exposés aux effets de ce phénomène.

Cinétique: Vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables (cf. art. 5 à 8 de l'arrêté du 29 septembre 2005). Dans le tableau APR proposé, la cinétique peut être lente ou rapide. Dans le cas d'une cinétique lente, les enjeux ont le temps d'être mises à l'abri. La cinétique est rapide dans le cas contraire.

Danger: Cette notion définit une propriété intrinsèque à une substance (butane, chlore...), à un système technique (mise sous pression d'un gaz...), à une disposition (élévation d'une charge...), à un organisme (microbes), etc., de nature à entraîner un dommage sur un « élément vulnérable » (sont ainsi rattachées à la notion de « danger » les notions d'inflammabilité ou d'explosivité, de toxicité, de caractère infectieux, etc. inhérentes à un produit et celle d'énergie disponible [pneumatique ou potentielle] qui caractérisent le danger).

Efficacité (pour une mesure de maîtrise des risques) ou capacité de réalisation: Capacité à remplir la mission/fonction de sécurité qui lui est confiée pendant une durée donnée et dans son contexte d'utilisation. En général, cette efficacité s'exprime en pourcentage d'accomplissement de la fonction définie. Ce pourcentage peut varier pendant la durée de sollicitation de la mesure de maîtrise des risques. Cette efficacité est évaluée par rapport aux principes de dimensionnement adapté et de résistance aux contraintes spécifiques.

Evénement initiateur : Événement, courant ou anormal, interne ou externe au système, situé en amont de l'événement redouté central dans l'enchaînement causal et qui constitue une cause directe dans les cas simples ou une combinaison d'événements à l'origine de cette cause directe.

Evénement redouté central : Evénement conventionnellement défini, dans le cadre d'une analyse de risque, au centre de l'enchaînement accidentel. Généralement, il s'agit d'une perte de confinement pour les fluides et d'une perte d'intégrité physique pour les solides. Les événements situés en amont sont conventionnellement appelés « phase pré-accidentelle » et les événements situés en aval « phase post-accidentelle ».

Fonction de sécurité: Fonction ayant pour but la réduction de la probabilité d'occurrence et/ou des effets et conséquences d'un événement non souhaité dans un système. Les principales actions assurées par les fonctions de sécurité en matière d'accidents majeurs dans les installations classées sont: empêcher, éviter, détecter, contrôler, limiter. Les fonctions de sécurité identifiées peuvent être assurées à partir d'éléments techniques de sécurité, de procédures organisationnelles (activités humaines), ou plus généralement par la combinaison des deux.

Gravité: On distingue l'intensité des effets d'un phénomène dangereux de la gravité des conséquences découlant de l'exposition d'enjeux de vulnérabilités données à ces effets.

La gravité des conséquences potentielles prévisibles sur les personnes, prises parmi les intérêts visés à l'article L. 511-1 du code de l'environnement, résulte de la combinaison en un point de l'espace de l'intensité des effets d'un phénomène dangereux et de la vulnérabilité des enjeux potentiellement exposés.

Indépendance d'une mesure de maîtrise des risques: Faculté d'une mesure, de par sa conception, son exploitation et son environnement, à ne pas dépendre du fonctionnement d'autres éléments et notamment d'une part d'autres mesures de maîtrise des risques, et d'autre part, du système de conduite de l'installation, afin d'éviter les modes communs de défaillance ou de limiter leur fréquence d'occurrence.

Intensité des effets d'un phénomène dangereux : Mesure physique de l'intensité du phénomène (thermique, toxique, surpression, projections). Parfois appelée gravité potentielle du phénomène dangereux (mais cette expression est source d'erreur). Les échelles d'évaluation de l'intensité se réfèrent à des seuils d'effets moyens conventionnels sur des types d'éléments vulnérables [ou enjeux] tels que « homme », « structures ». Elles sont définies, pour les installations classées, dans l'arrêté du 29/09/2005. L'intensité ne tient pas compte de l'existence ou non d'enjeux exposés. Elle est cartographiée sous la forme de zones d'effets pour les différents seuils.

Mesure de maîtrise des risques (ou barrière de sécurité): Ensemble d'éléments techniques et/ou organisationnels nécessaires et suffisants pour assurer une fonction de sécurité. On distingue parfois :

- Les mesures (ou barrières) de prévention : mesures visant à éviter ou limiter la probabilité d'un événement indésirable, en amont du phénomène dangereux
- Les mesures (ou barrières) de limitation : mesures visant à limiter l'intensité des effets d'un phénomène dangereux
- Les mesures (ou barrières) de protection : mesures visant à limiter les conséquences sur les enjeux potentiels par diminution de la vulnérabilité.

Phénomène dangereux: Libération d'énergie ou de substance produisant des effets, au sens de l'arrêté du 29 septembre 2005, susceptibles d'infliger un dommage à des enjeux (ou éléments vulnérables) vivantes ou matérielles, sans préjuger l'existence de ces dernières. C'est une « Source potentielle de dommages »

Potentiel de danger (ou « source de danger », ou « élément dangereux », ou « élément porteur de danger »): Système (naturel ou créé par l'homme) ou disposition adoptée et comportant un (ou plusieurs) « danger(s) » ; dans le domaine des risques technologiques, un « potentiel de danger » correspond à un ensemble technique nécessaire au fonctionnement du processus envisagé.

Prévention : Mesures visant à prévenir un risque en réduisant la probabilité d'occurrence d'un phénomène dangereux.

Protection: Mesures visant à limiter l'étendue ou/et la gravité des conséquences d'un accident sur les éléments vulnérables, sans modifier la probabilité d'occurrence du phénomène dangereux correspondant.

Probabilité d'occurrence: D'après la circulaire du 10 mai 2010, la probabilité d'occurrence d'un accident est assimilée à sa fréquence d'occurrence future estimée sur l'installation considérée. Elle est en général différente de la fréquence historique et peut s'écarter, pour une installation donnée, de la probabilité d'occurrence moyenne évaluée sur un ensemble d'installations similaires.

Attention aux confusions possibles :

- 1. Assimilation entre probabilité d'un accident et celle du phénomène dangereux correspondant, la première intégrant déjà la probabilité conditionnelle d'exposition des enjeux. L'assimilation sous-entend que les enjeux sont effectivement exposés, ce qui n'est pas toujours le cas, notamment si la cinétique permet une mise à l'abri ;
- 2. Probabilité d'occurrence d'un accident x sur un site donné et probabilité d'occurrence de l'accident x, en moyenne, dans l'une des N installations du même type (approche statistique).

Réduction du risque : Actions entreprises en vue de diminuer la probabilité, les conséquences négatives (ou dommages), associés à un risque, ou les deux. [FD ISO/CEI Guide 73]. Cela peut être fait par le biais de chacune des trois composantes du risque, la probabilité, l'intensité et la vulnérabilité :

- Réduction de la probabilité : par amélioration de la prévention, par exemple par ajout ou fiabilisation des mesures de sécurité
- Réduction de l'intensité :
 - Par action sur l'élément porteur de danger (ou potentiel de danger), par exemple substitution par une substance moins dangereuse, réduction des vitesses de rotation, etc.
 - Réduction des dangers: la réduction de l'intensité peut également être accomplie par des mesures de limitation

La réduction de la probabilité et/ou de l'intensité correspond à une réduction du risque « à la source ».

- Réduction de la vulnérabilité : par éloignement ou protection des éléments vulnérables (par exemple par la maîtrise de l'urbanisation, ou par des plans d'urgence).

Risque: « Combinaison de la probabilité d'un événement et de ses conséquences » (ISO/CEI 73), « Combinaison de la probabilité d'un dommage et de sa gravité » (ISO/CEI 51).

Scénario d'accident (majeur): Enchaînement d'événements conduisant d'un événement initiateur à un accident (majeur), dont la séquence et les liens logiques découlent de l'analyse de risque. En général, plusieurs scenarii peuvent mener à un même phénomène dangereux pouvant conduire à un accident (majeur): on dénombre autant de scenarii qu'il existe de combinaisons possibles d'événements y aboutissant. Les scenarii d'accident obtenus dépendent du choix des méthodes d'analyse de risque utilisées et des éléments disponibles.

Temps de réponse (pour une mesure de maîtrise des risques): Intervalle de temps requis entre la sollicitation et l'exécution de la mission/fonction de sécurité. Ce temps de réponse est inclus dans la cinétique de mise en œuvre d'une fonction de sécurité, cette dernière devant être en adéquation [significativement plus courte] avec la cinétique du phénomène qu'elle doit maîtriser.

Les définitions suivantes sont issues de l'arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement :

Aérogénérateur: Dispositif mécanique destiné à convertir l'énergie du vent en électricité, composé des principaux éléments suivants: un mât, une nacelle, le rotor auquel sont fixées les pales, ainsi que, le cas échéant, un transformateur

Survitesse: Vitesse de rotation des parties tournantes (rotor constitué du moyeu et des pales ainsi que la ligne d'arbre jusqu'à la génératrice) supérieure à la valeur maximale indiquée par le constructeur.

